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Abstract—Sparse matrix-vector multiplication (SpMV) is an
important primitive across a wide range of application domains
such as scientific computing and graph analytics. Due to its intrin-
sic memory-bound characteristics, the performance of SpMV on
throughput-oriented architectures such as GPU is bounded by the
limited bandwidth between processors and memory. Processing-
in-memory (PIM) architectures, made feasible by advances in
3D stacking, provide new opportunities to utilize ultra-high
bandwidth by integrating compute-logic into memory.

In this paper, we develop an SpMV accelerator, named as
SpaceA, based on PIM architectures. SpaceA integrates compute-
logic near memory banks to exploit bank-level bandwidth.
SpaceA contains both hardware and data-mapping design fea-
tures to alleviate irregular memory access patterns which hinder
full utilization of high memory bandwidth. In terms of hardware
design features, SpaceA consists of two unique features: (1) it
utilizes the capability of outstanding memory requests to hide
the memory access latency to data located in non-local memory
banks; (2) it integrates Content Addressable Memory (CAM)
at the bank level to exploit data reuse of the input vectors. In
addition, we develop a mapping scheme that partitions the sparse
matrix into different memory banks, to maximize the data locality
of the input vector and to achieve workload balance among
processing elements (PEs) near each bank. Overall, SpaceA
together with the proposed mapping method achieves 13.54x
speedup and 87.49% energy saving on average over the GPU
baseline on SpMV computation. In addition to SpMV primitives,
we conduct a case study on graph analytics to demonstrate the
benefits of SpaceA for applications built on SpMV. Compared
to Tesseract and GraphP, state-of-the-art graph accelerators,
SpaceA obtains better performance due to its higher effective
bandwidth provided by near-bank integration.
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I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is a special

case of matrix-vector multiplication, where the input matrix

contains a large number of zero elements. In many real-

world application domains such as scientific computing [19],

[51] and graph analytics [14], [72], [74], algorithms can

be formulated as iterations of matrix-vector multiplication
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where the matrix is sparse and is reused across multiple

runs. Multiple iterations of SpMV run until the convergence

of the output vector form the primary bottleneck in these

algorithms. The zero elements in the sparse matrix provide

new opportunities for efficient storage and computation by

skipping them, allowing them to overcome the bottleneck in

these algorithms.

Because of the importance of SpMV across these applica-

tion domains, efficient SpMV computing has been well-studied

in traditional multi-core and many-core architectures over the

last several decades. These studies mainly focus on efficient

sparse matrix storage methods and corresponding parallel

algorithm designs to balance workloads across processors, to

exploit the locality of the input vector, and to reduce atomic

operation overheads in output vector [47], [59], [60], [71]. In

addition, several offline preprocessing techniques [37], [38],

[54] have been developed to improve the performance of

SpMV through optimized storage formats and partitioning

methods. In the application scenario where the same sparse

matrix is reused over multiple iterations, the overhead of

offline preprocessing is well-amortized. In this paper, we first

study state-of-the-art SpMV implementations in the vendor-

provided library on NVIDIA GPU. Our profiling results reveal

a high DRAM utilization, which indicates that SpMV has been

well-optimized on GPU and the memory bandwidth becomes

the bottleneck.

To provide a higher effective memory bandwidth, processing

in memory (PIM) and near data processing (NDP) architec-

tures introduce new opportunities by integrating compute-logic

near memory. The recent advancement in integrated circuit

(IC) process technology makes these architectures feasible, es-

pecially 3D stacking process technology [65]. Hybrid memory

cube (HMC) [1] and high bandwidth memory (HBM) [2] are

two promising memory designs that leverage the benefits of 3D

stacking. Memory banks are stacked onto layers above the base

logic die where memory control logic is fabricated, and dif-

ferent layers communicate using through-silicon vias (TSV).

Such a stacked memory organization presents opportunities

for PIM at two levels: 1) base logic die level and 2) memory

bank level with minimal changes to the circuit design of

bank groups. In comparison with the integration of compute-

logic on the base die, compute-logic near memory banks is

closer to data. Thus, access to local data has lower latency,

higher bandwidth, and higher energy efficiency. Therefore,



PIM architectures, especially bank-level logic integration, are

promising for designing SpMV accelerators to overcome the

bandwidth bottleneck in traditional multi-core and many-core

designs. In this work, we develop SpaceA, an accelerator for

SpMV based on near bank data processing. In SpaceA, we

distribute the non-zero elements across the memory banks

and operate on them using processing elements (PEs) near

the banks.
Although PIM architectures provide higher effective band-

width compared to the traditional memory interface between

processors and memory, there are several challenges in ac-

celerator designs. First, the memory latency to access data in

other banks is much higher than in the local bank. The PE

design should hide such a high latency for fully utilizing the

bank level bandwidth. Second, since interconnect bandwidth

is much smaller than that of the memory bank, memory access

should be kept as local as possible to ease the burden on

the interconnect. Third, PEs near the memory banks have a

strict area budget, which requires the compute logic to remain

fairly simple, but effective. In addition, challenges of workload

balancing and locality exploitation of the input vector also

exist when distributing non-zero elements across PEs.
Our accelerator, SpaceA, is designed to overcome these

challenges. To overcome the first challenge, each PE near the

memory bank possesses a queue to hold the non-zero elements

for processing and memory requests to input vector according

to the column index of non-zero elements in this queue.

Memory requests are non-blocking to hide the memory access

latency to other banks by exploiting memory-level parallelism

(MLP). To address the second challenge, content addressable

memory (CAM) is integrated at the bank level to cache

elements from the input vector so that the amount of memory

access to other banks is reduced by exploiting the locality.

This helps alleviate the bandwidth pressure on the TSVs. The

third challenge related to the strict area budget is tackled

by the fact that our PE design only includes a queue and a

floating-point unit (FPU). Therefore, our PE occupies a very

small area overhead, which makes it practical to be integrated

near the memory banks. In addition to these design options to

overcome hardware challenges, we develop a mapping scheme

for SpaceA to distribute the non-zero elements of the sparse

matrix across different memory banks to achieve workload

balance among PEs and to exploit the locality of data from

the input vector.
In summary, our contributions are as follows:

• We design an accelerator, named SpaceA, to leverage

outstanding memory requests to hide the memory access

latency to non-local banks. To reduce the memory traffic to

non-local banks, we integrate CAM buffers in SpaceA to

exploit the locality of input vectors.

• We develop a mapping scheme for SpaceA to distribute

the non-zero elements across different banks to achieve

workload balance among PEs and to exploit the data locality

of the input vector.

• Our evaluation of SpaceA with the proposed mapping

scheme on matrices [19] from real-world applications re-
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Fig. 1. The compressed sparse row (CSR) format of a sparse matrix.

veals 13.5x speedup and 87.49% energy saving on average

over the GPU baseline with only 4.86% area overhead.

Additionally, our case study on graph applications demon-

strates a better performance than state-of-the-art graph ac-

celerators, Tesseract [4] and GraphP [76], because of the

higher effective bandwidth provided by near-bank integra-

tion instead of placing compute-logic on the base die.

II. BACKGROUND AND MOTIVATION

A. SpMV Workloads

SpMV is a widely used operation in many applications that

use algorithms based on a large amount iterations of matrix-

vector multiplication in which the coefficient matrix is sparse.

We denote an SpMV operation as Y = Y +AX where X is

the input vector, A is the input matrix, and Y is the output

vector. We denote the dimensions of the input matrix as m
and n, which indicate that the matrix has m rows and n
columns. Additionally, we denote nnz as the number of non-
zero elements. Each component of the output vector can be

computed as Yi = Yi +
∑n

j=0 AijXj where Yi is the i-th
component of vector Y , Xj is the j-th component of vector
X , and Aij is the element located in i-th row and j-th column
of matrix A. For a sparse matrix, the computation of AijXj

can be skipped for locations where Aij = 0.
For highly sparse matrices, compressed storage formats such

as Coordinate List (COO) and Compressed Sparse Row (CSR)

store the non-zero elements efficiently and remove ineffective

computation for the zero elements. The COO format is com-

posed of three lists of length nnz. These three lists store the
row index, the column index, and the value, respectively, for

each non-zero element. The CSR format, on the other hand,

consists of three arrays: 1) row ptr, 2) col idx, and 3) vals.

Each entry in the row ptr array points to an entry in the

col ids array which represents the beginning of the list of

column ids containing non-zero elements in that row. The row

ptr entry simultaneously points to the entry in the vals array

which records the value of the non-zero elements. Figure 1

demonstrates how non-zero elements of i-th row are stored.
Compared to COO, CSR is more compact since it saves

the memory space of row index array from the length of nnz
to the length of m + 1. Therefore, CSR is the most widely
used sparse matrix format and csrmv() [3] is supported in
almost all libraries on multi-core and many-core architectures



to compute SpMV. SpaceA is designed to perform SpMV

based on the CSR format.

B. SpMV on GPU

The poor reuse opportunity in the sparse matrix and irreg-

ular memory access patterns make SpMV memory-bound on

multi-core and many-core processors. Compared to the CPU,

GPU provides higher memory bandwidth through the GDDR

memory bus and exploits memory-level parallelism to hide

long memory access latency. To understand the state-of-the-

art implementation of SpMV on GPU, we profiled SpMV

computation with a collection of real-world matrices from the

University of Florida sparse matrix collection [19]. The names,

application domains, and characteristics of these matrices are

elaborated upon Table I. For the implementation of SpMV

on GPU, we use the library routine csrmv() from the vendor-
provided library cuSPARSE [3], which is a library optimized

for sparse linear algebra operations on NVIDIA GPU. We

measured the performance and profiled the DRAM metrics of

SpMV on NVIDIA GPU, Titan Xp. DRAM read throughput

is collected by nvprof . In addition, we measured effective
read throughput which is computed as nnz times the size
of a non-zero element over the measured execution time.

Moreover, we compute the achieved GFLOPs of SpMV as

nnz over the execution time, and the ALU utilization as the
achieved GFLOPs over the maximum GFLOPs provided by

GPU. Compared to the maximum DRAM bandwidth of Titan

Xp, which is 547.8 GB/s, Figure 2 shows that the current

average bandwidth utilization (as represented by the mean

orange bar) of SpMV on GPU is 27.08% and 43.39% when

excluding matrices 12, 13, and 141. In addition, Figure 2 shows

that the ALU utilization is only 2.68%. Figure 2 provides two

important starting points for our work. First, the small ALU

utilization compared to the much larger DRAM bandwidth uti-

lization demonstrates the memory-bound behavior of SpMV,

motivating our PIM-based architecture. Second, the effective

bandwidth utilization (represented by the blue bar) is close

to the actual bandwidth utilization (represented by the orange

bar), which indicates that actual hardware innovation (rather

than algorithmic innovation to eliminate redundant DRAM

accesses) is required for higher performance SpMV.

C. 3D Memory

3D stacked memory such as HMC (the focus of this paper)

and HBM are promising in terms of PIM architectures [65].

As shown in Figure 3(b), 3D stacking involves a base logic

die with layers of DRAM dies stacked on top of it. A memory

cube can be partitioned into vertical slices called vaults, each

with private vertical connections through all layers physically

realized with TSVs. Memory banks on a given layer are

partitioned into bank groups (usually one bank group per

vault per layer), and each bank group shares the same TSVs

1Exceptions represent social networks and web graphs which show rela-
tively poorer utilization of the DRAM bandwidth, in agreement with prior
studies [9], [10], [12].
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Fig. 2. Profiling results of SpMV on GPU (The details of each matrix are
listed in Table I).

allowing them to communicate among the vault layers. Intra-

vault communication occurs through the TSVs, and inter-

vault communication occurs through Network-on-Chip (NoC)

routers. The external interface for a memory cube is composed

of four SerDes links.

In a typical HMC specification [1], there are 1024 TSVs

in the same memory cube running at the bit rate of 2Gbps.

Thus the TSVs of a cube provide bandwidth up to 256 GB/s.

Bank-level bandwidth offers greater potential than the TSV

bandwidth. Each memory bank has the interface to read or

write 256 bits when data is in the row buffer for tCCD cycles.

Without bus turn-around overhead, tCCD can be as small as 4

cycles. Therefore, 8GB/s bandwidth with a 1 GHz clock can

be provided per bank-level interface. A memory cube with

16 vaults where each vault controls a stack of memory banks

with 8 layers and 2 banks in a bank group has 256 memory

banks. Thus, this memory cube can provide 2 TB/s internal

bandwidth at the bank-level, which is 8 times than the internal

bandwidth provided by TSV.

III. SPACEA ARCHITECTURE

A. Overview

The architecture design of SpaceA is demonstrated in Fig-

ure 3. As shown in Figure 3(a) and 3(b), SpaceA is composed

of several 3D stacked memory cubes connected in a memory

network. To exploit bank-level memory bandwidth, SpaceA

integrates a PE near every memory bank. The input/output

vectors are evenly partitioned and stored in memory banks on

the DRAM layer just above the base logic die, whereas the

sparse matrix is statically distributed by the mapping algorithm

(Section IV) on all the other DRAM layers. The separation

of the storage allows each PE to process the sparse matrix

in a streaming manner to maximize the read bandwidth. In

addition, on the DRAM die for vectors, the elements with the

same index from input and output vectors are stored in the

same memory bank. This is because, in an iteration of SpMV,

the output of i-th iteration is the input of i + 1-th iteration.
Therefore, this storage scheme can eliminate data movement

between iterations for input and output vectors.

B. PE Design

In SpaceA design, there is a PE dedicated for each memory

bank. Since matrix and vector data are separated into memory
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banks on different dies, PEs attached to these memory banks

have different functionalities. The PE of memory banks storing

the sparse matrix computes partial dot-product results, while

the PE of memory banks storing vectors accumulates the

partial results which is finally stored into the output vector.

We denote the first type of PE as Product-PE and the second
type of PE as Accumulation-PE. Although these two types of
PEs have different functionalities, they can be realized by the

same set of hardware components. The hardware components

of a bank group are shown in Figure 3(c). Following is the

description of how these components are designed for the

Product-PE and how they are used for the Accumulation-PE.

Product-PE: Product-PE is responsible for processing non-
zero elements of the sparse matrix in its local memory bank.

After tRAS cycles, a DRAM row will be loaded into the

row buffer of the memory bank (Figure 3(c)- 1 ). Using the

similar idea of CSR matrix format, when distributing non-zero

elements into memory banks, the mapping algorithm aligns

the number of non-zero elements of a row into the size of a

DRAM row. This alignment causes non-zero elements of the

same DRAM row to end in the same row index in the original

sparse matrix. As a result, when storing non-zero elements in

a DRAM row, the leading 4 bytes are used to indicate the row

index of non-zero elements in this DRAM row, and the rest

of the space is used to store pairs of column index and value.

As shown in Figure 3(c)- 2 , non-zero elements from a

DRAM row buffer are pushed into a PE queue if the PE

queue is not full. The PE queue is physically realized with

scratchpad memory while the control logic in Product-PE

accesses elements inside it as a logical cyclic queue. For each

non-zero element in the PE queue, it needs to compute the

partial result AijXj where the row index i, column index j,
and value Aij are already known. The control unit scans the

PE queue in a cyclic manner when it is not empty, and then

processes a non-zero element every Lp cycle (Figure 3(c)- 3 ).

For each unprocessed non-zero element, it will check whether

Xj is ready in the register file.

Case I: Xj is not ready: When Xj is not ready, the Product-

PE needs to read it from other memory banks because vectors

are stored separately from the matrix. The access latency to a

remote bank is significantly larger than the access to its local

memory. To exploit the locality of the input vector, SpaceA

integrates an L1 CAM for PEs in the same bank group. This L1

CAM provides a key-value store so that it can help to search

the value Xj according to the column index j (Figure 3(c)- 4 ).
When the access to L1 CAMmisses, it will return a miss signal

which indicates that the remote access is unavoidable. To hide

the latency of remote access, the control unit will continue to

process the next element in the PE queue instead of waiting for

the value Xj . Since this is a logical cyclic queue, the control

unit will access this non-zero element again after scanning

the rest of non-zero elements in the PE queue. Meanwhile,

L1 CAM will send the requested column index j to the load
queue (LDQ) (Figure 3- 5 ) to remove the duplication of data

requests. If this column index has not been requested yet, it

will send out the request through TSV (Figure 3(c)- 6 ). When

the requested value Xj comes back, it will be written into both

L1 CAM and register file. The corresponding load request j
will be removed from the load queue. Since the control unit

repeatedly iterates through all elements in the PE queue, Xj

will become ready when the control unit accesses it again after

the requested value comes back.

Case II: Xj is ready: When Xj is ready in the register file, it

will send Aij , Xj , and the current partial result Yi to Floating-

point Unit (FPU) for computing Yi = Yi+AijXj (Figure 3(c)-

7 ). After accumulating the partial result into Yi, the non-

zero element is labelled as processed. When all of non-zero

elements from the same DRAM row in the front of the PE

queue are processed, they are popped out of the queue and

the control unit moves the front pointer of the queue. The

granularity for popping non-zero elements is the same size of

a DRAM row buffer so that the whole row buffer of new data



can be pushed into the PE queue, and checked as to whether

the row index of this new row is different from the existing

row index. The partial result Yi is flushed out through TSV

when the new row index is different from the existing row

index.

Accumulation-PE: Bank groups with Accumulation PE
serve two purposes. First, since the memory banks of this

bank group store some elements of the input vector, it will

respond the value Xj according to the requested column index

j. For this purpose, the request first goes to L1 CAM, and then
goes to the memory bank if Xj is not in the L1 CAM (CAM

miss). This part only needs the help of the memory bank, L1

CAM, and control unit. Second, since the memory banks of

this bank group store some elements of the output vector, they

need to accumulate partial results Yi. To achieve this purpose,

the SRAM of the PE queue is used to realize an update buffer

where the elements of the output buffer are stored. When Yi

comes, it will first look up the output buffer by the row index

stored in the register file. If corresponding output elements are

not in the update buffer, it will be loaded into the update buffer

from the memory bank. Then existing Yi and new partial result

Yi will be accumulated with the help of the FPU. When the

update buffer is full, it will write the logical first row back to

the memory bank, and load a new row containing Yi from the

memory bank.

C. Vault Controller

The components of a vault controller on the base die are

shown in Figure 3(d). In addition to the existing NoC router

for inter-vault communication and the memory controller to

read and write memory banks attached to the same TSVs,

SpaceA integrates a L2 CAM and a corresponding load queue

to exploit the locality of the input vector in the communication

path between bank groups. There are three types of packets a

vault controller could potentially process.

Type I: Xj request. When the vault controller receives the
request for the value of Xj , it will first look up the L2 CAM

according to the column index j. If Xj exists in L2 CAM, the

vault controller will generate a response packet with the value

of Xj , and send it back to the source of the request packet,

either by NoC router to other vaults or TSV to bank groups

attached to the same TSV. If Xj does not exist in L2 CAM,

it will look up the load queue (LDQ) to remove duplicated

requests for Xj . The vault controller will forward this request

to the bank group storing Xj according to the column index

j by either the NoC router or the TSV.
Type II: Xj response. When the vault controller receives the
response for the value of Xj , the vault controller will have

the same logic as the Product-PE hearing back the value of

Xj . Besides forwarding this packet to its destination, the vault

controller will write the value Xj into its L2 CAM and remove

the corresponding entry in the load queue.

Type III: Yi partial result: The vault controller for partial re-
sult Yi will forward it to the corresponding vault storing Yi

according to the row index i. If Yi is stored in the same vault,

it will forward it to the bank groups on the bottom of DRAM

Algorithm 1 Row assignment to logical PEs.
Init nnz = nnz

#PEs
Init Kp = a large constant value

for pid = 0 to #PEs do
Init the set of assigned rows, Rpid = ∅
Init the set of unique column indexes, COLpid = ∅
Init the number of assigned non-zero elements,Wpid = 0

end for
for i = 0 to m do
Ni: the number of non-zero elements in i-th row
Ci: the set of column indexes in i-th row
for pid = 0 to #PEs do

if Wpid +Ni > nnz then
Scorepid = −(Wpid +Ni − nnz)×Kp

else
Overlap = |Ci

⋂
COLpid|

Scorepid = max{Overlap
Ni

, 1
Wpid+Ni

}
end if

end for
maxID = the pid with highest Scorepid
RmaxID = RmaxID

⋃{i}
COLmaxID = COLmaxID

⋃
Ci

WmaxID = WmaxID +Ni

end for

dies by TSVs so that the partial result of Yi can be accumulated

with the help of the Accumulation-PE.

IV. MAPPING METHOD

A. Overview

The proposed mapping method distributes the non-zero

elements of a sparse matrix into the memory banks of SpaceA

for Product-PE to process. There are two overall metrics to

efficiently use SpaceA hardware: 1) workload balance and

2) locality. First, since all PEs process non-zero elements in

parallel, the performance is bounded by the slowest PE, which

requires workload balance among PEs. Second, since SpaceA

integrates L1 CAM at the bank group level and L2 CAM at

the base die of each vault to mitigate the latency of accessing

the data of input vector, non-zero elements assignment should

consider the column index locality of non-zero elements to

leverage L1 and L2 CAM for keeping access local.

To achieve workload balance and leverage the locality of the

input vector, we design the overall mapping pipeline shown in

Figure 4, which takes the hardware configuration of SpaceA

and the sparse matrix as the input. As shown in Figure 4, the

first phase assigns different rows to PEs, which are logical

PEs without any physical location information. In this phase,

we exploit the intra-PE locality by assigning the rows of non-

zero elements with similar column index pattern to the same

PE. Meanwhile, this phase also balances the number of non-

zero elements assigned to PEs. The algorithm used in this

phase is further introduced in Section IV-B. In the second

phase, we place all logical PEs into the physical location in

SpaceA. This phase clusters PE workloads with similar sets

of column index from the non-zero elements, and minimizes
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Fig. 4. The flow of our mapping algorithm which is composed of two phases: row assignment to logical PEs (Phase I) and PE placement to bank groups
and vaults (Phase II).

the maximal number of unique column indexes across bank

groups and vaults to achieve workload balance. The formulated

optimization problem is detailed in Section IV-C.

B. Logical PE Workload

The first phase assigns multiple rows of the sparse matrix

into PEs, each of which is considered equivalent. In this phase,

we balance the workload among PEs and maximize the intra-

PE locality. Algorithm 1 shows the scheme, which iterates

through all rows and determines which PE is the best to be

assigned for a specific row according to the current assignment

of previous rows. The metric used to determine the best PE for

processing this row is designed according to the following two

principles. First, if the current row i assigned to the current
PE pid makes the current PE process the number of elements
larger than nnz, we add a penalty for the number of elements
exceeding this budget. The budget nnz is computed as nnz
over the total number of logical PEs. When each PE processes

nnz elements, the workloads of PEs are perfectly balanced.
Second, the column index overlap between non-zero elements

of the current row i and the non-zero elements of existing
rows assigned to the current PE pid is computed. In case of
an overlap, the overlap ratio is taken as the score, which is

the number of overlap non-zero elements over the number of

non-zero elements of row i. When there is no overlap, the
factor one over the number of non-zero elements assigned to

the current PE is taken as the score. This score rating metric

means we optimize locality first and the workload balance

when the number of non-zero elements does not exceed the

given budget nnz. After computing the score of each PE, the
row i is assigned to the PE with the highest score.
Although mapping the sparse matrix optimally to logi-

cal PEs is an NP-hard problem, our mapping heuristic is

feasible in terms of time complexity. We denote P as the

number of PEs, Wpid as the number of non-zero elements

assigned to PE pid, and Ni as the number of non-zero

elements in the row i. Each row needs the time complexity

of O(Ni

∑P
pid=1 logWpid). Since Wpid is always smaller than

nnz (the total number of non-zero elements), the upper bound
of the time complexity of a row assignment can be simplified

as O(NiPlognnz). Summing up the time complexity of
assigning all rows, since

∑m
i=1 Ni = nnz, the time com-

plexity for finishing all row assignments has an upper bound

O(P ×nnzlognnz). This time complexity is scalable in terms
of the number of PEs and the number of non-zero elements.

Therefore, the algorithm of this phase is practical enough, and

its effectiveness is further demonstrated in Section V-C.

C. Logical PE Placement

In this phase, each logical PE is placed into the position

of a physical PE. We decouple this phase into two stages.

First, logical PEs are clustered into bank groups. Second,

bank groups are clustered into vaults. To achieve locality and

workload balance, this phase minimizes the maximal number

of unique column indexes across bank groups and vaults when

clustering banks and bank groups. Both stages, clustering

logical PEs and bank groups, represent similar problems in

terms of problem structure and optimization target. Therefore,

we abstract the problem of both stages as follows. Given p
sets S1, S2, ..., Sp, we divide them evenly into q groups, and
each group has the same number of sets k where p = kq.
Therefore, we denote Cgw as the w-th set assigned to the group
g. The value of Cgw should be one of the values between

1 and p. To optimize locality, we want sets assigned to the
same group to have a larger overlap. Locality indicates the

preference to assign sets with a larger number of overlap while



workload balance implies that the maximal number of unique

elements should be minimized. The problem is formulated as

Formula 1 where F (C) stands for the maximum number of

unique elements across all groups under the assignment C.

minimize
C

F (C)

subject to F (C) = max
1≤g≤q

{|
k⋃

w=1

SCgw |},

Cgw ∈ {1, 2, ..., p}, ∀1 ≤ g ≤ q, 1 ≤ w ≤ k

Cg1w1 �= Cg2w2 , ∀(g1, w1) �= (g2, w2)

(1)

In the first stage, p equals the number of logical PEs and q
equals the number of bank groups while in the second stage, p
equals the number of bank groups and q equals the number of
vaults. The formulated problem is also an NP-hard problem,

thus we use a heuristic algorithm similar to Algorithm 1

to solve it. The effectiveness of the mapping algorithm is

quantitatively shown in Section V-C.

V. EVALUATION

In this section, we first introduce the experimental setup

in Section V-A. Next, we detail the overall performance,

power, and area results of our design compared to state-

of-the-art SpMV implementations on GPU in Section V-B.

Section V-C demonstrates the advantages of our proposed

mapping methods. Section V-D shows the sensitivity studies of

SpaceA performance to hardware configurations. Section V-E

studies the scalability of SpaceA design. Finally, we conduct

a case study of using SpaceA to accelerate graph analytics to

show its potential for benefiting applications built on SpMV.

A. Evaluation Methodology

Workload. We evaluate SpaceA by executing SpMV using
fifteen real-world matrices from various application domains

including scientific computing and graph analytics. These

matrices come from the University of Florida collection [19],

and they are used in prior studies for accelerating SpMV on

GPU [60] and Intel Xeon Phi processors [61]. In terms of the

distribution of non-zeros, these matrices cover both structural

patterns (i.e. a smaller standard deviation of the number of

non-zeros in each row) and non-structural patterns (i.e. a larger

standard deviation of the number of non-zeros in each row).

The details of these matrices are listed in Table I.

Hardware Configuration. We adopt an HMC-like [1]
design to realize the architecture design of SpaceA. The

rest of the evaluation results assume an HMC-like architec-

ture, a detailed further discussion between HMC and HBM

technology can be found in Section VII. We use an HMC

configuration specified in the prior HMC characterization

study [28]. Specifically, a memory cube has 16 vaults that use

1024 TSVs running at the bit rate of 2 Gbps to communicate

with 8 stacked DRAM die layers. Each bank group has 2

banks; each bank has a capacity of 128 Mb with a 2 Kb row

buffer. Therefore, there are 256 memory banks in a memory

cube with a total of 4 GB capacity, and a memory cube

has a footprint of 48mm2. We use NVIDIA Titan Xp as a

representative of GPU architecture for comparison which has

processors with a die size 471 mm2, an area equivalent to

that of 10 cubes. We assume that the area of GPU DRAM

dies is comparable to processors in Titan Xp, thus the default

configuration of SpaceA uses 16 cubes, occupying 768 mm2

– a similar area footprint as Titan Xp. Inside each PE, there is

a 16 Kb scratchpad memory for the PE queue, which enables

the PE to process non-zero elements from 8 DRAM rows

concurrently. Register file has the same size as the number of

non-zero elements stored in a PE queue. To support double-

precision SpMV in scientific computing, each PE includes a

floating-point unit (FPU). PEs from the same bank group share

an L1 CAM with 32 sets and 4 ways per set. Each way in L1

CAM has 32 bytes, which is equivalent to the size of 4 input

vector elements. The configuration of the number of ways per

set and the size of each way in L2 CAM is the same as L1

CAM for simplicity, whereas L2 CAM has a larger number

of sets, which is 2048 by default. The size of L1 and L2

CAM are 4 KB and 256 KB respectively. The load queues

for L1 and L2 CAM are used to remove duplicate requests,

and they are realized with fully associated CAM which have

the sizes of 512 and 8192 elements respectively. The default

configuration of L1 and L2 CAM is an intuitive design point; a

detailed sensitivity for L1 and L2 CAM will be demonstrated

in Section V-D to further justify our design point.

Simulation Method. We develop an event-based in-house
simulator for the performance and power simulation. The per-

formance simulation is based on triggering events according

to the behavior of each hardware component described in

Section III. The triggered events are simulated to happen after

a deterministic latency of the event triggering it which is based

on the latency model of each hardware component. The events

in the performance simulator cover FPU computation, the

read/write to DRAM banks, on-chip SRAM (register file, PE

queue, L1 CAM, L1 load queue, L2 CAM, and L2 load queue),

TSV, and NoC packet transfer. Additionally, our simulator

maintains a data structure tracking values stored in DRAM

banks and on-chip SRAM when simulating each event, and

some events will modify this data structure. At the end of the

simulation, the correctness of the event triggering mechanism

is validated by the values of the output vector.

After validating the event triggering mechanism, the fidelity

of our performance simulation relies on the latency of each

event. Therefore, we use an existing well-validated simulator

CACIT-3DD [15] and tape-out FPU design [23] to provide

the latency model of each hardware component. Specifically,

CACTI-3DD provides the access latency for DRAM banks,

on-chip SRAM, and data transfer via TSV. Prior work [23]

provides the latency of the FPU design.

Our event-based simulator logs a detailed event trace in-

cluding read/write transactions to DRAM banks and on-chip

SRAM, TSV data transfer, and FPU computation. Mean-

while, CACTI-3DD provides the energy consumption for each

read/write transaction, TSV data transfer, and the static power

of these components. FPU design [23] provides both dynamic

and static power. Finally, we estimate the total energy con-



TABLE I
THE INFORMATION OF SPARSE MATRICES USED TO EVALUATE SPMV ON GPU AND SPACEA. THE NUMBER OF NON-ZERO ELEMENTS (nnz), AVERAGE
NUMBER OF NON-ZERO ELEMENTS PER ROW (μ), AND THE STANDARD DEVIATION OF THE NUMBER OF NON-ZERO ELEMENTS IN EACH ROW (σ) ARE

SHOWN TO REFLECT THE PATTERN OF NON-ZERO ELEMENTS DISTRIBUTION.

ID Matrix Domain Dimensions nnz μ σ
1 bcsstk32 Structural Problem 44609 x 44609 2014701 45.16 15.48
2 cant 2D/3D Problem 62451 x 62451 4007383 64.17 14.06
3 consph 2D/3D Problem 83334 x 83334 6010480 72.13 19.08
4 crankseg 2 Structural Problem 63838 x 63838 14148858 221.64 95.88
5 ct20stif Structural Problem 52329 x 52329 2600295 51.57 16.98
6 lhr71 Chemical Process Simulation Problem 70304 x 70304 1494006 21.74 26.32
7 ohne2 Semiconductor Device Problem 181343 x 181343 6869939 61.01 21.09
8 pdb1HYS Weighted Undirected Graph 36417 x 36417 4344765 119.31 31.86
9 pwtk Structural Problem 217918 x 217918 11524432 53.39 4.74
10 rma10 Computational Fluid Dynamics Problem 46835 x 46835 2329092 50.69 27.78
11 shipsec1 Structural Problem 140874 x 140874 3568176 55.46 11.07
12 soc-sign-epinions Directed Weighted Graph 131828 x 131828 841372 6.38 32.95
13 Stanford Directed Graph 281903 x 281903 2312497 8.20 166.33
14 webbase-1M Weighted Directed Graph 1000005 x 1000005 3105536 3.11 25.35
15 xenon2 Materials Problem 157464 x 157464 3866688 24.56 4.07
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Fig. 5. Overall speedup and energy savings w.r.t GPU.

sumption by accumulating the energy needed for each activity

and the energy spent in the static power.

B. Overall Performance, Power, and Area

Figure 5 shows the performance and energy efficiency for

both our architecture design and the proposed mapping algo-

rithm. As shown in Figure 5, the architecture design of SpaceA

obtains 6.22x speedup and reduces the energy consumption

by 4.89x (79.55% energy saving) on average compared to

the GPU baseline. The results of SpaceA shown in Figure 5

uses a naive mapping which randomly assigns rows from the

sparse matrix to PEs, so the performance and energy efficiency

benefits mainly come from the advance of the architecture

design. Figure 5 also demonstrates the overall performance

energy efficiency with the proposed mapping method. SpaceA

with the proposed mapping achieves 13.54x speedup and

reduces 7.99x energy consumption (87.49% energy saving)

on average compared to the GPU baseline. The comparison

between the results of SpaceA using two mapping methods

reveals that our proposed mapping method contributes 2.18x

speedup and saves 1.63x energy consumption over the naive

mapping method.

We estimate the area of the hardware components needed

by SpaceA in addition to the existing HMC memory with

TABLE II
THE AREA AND POWER DENSITY OF COMPONENTS IN A BANK GROUP.

Component Area Power Density

PE Queue (x2) 0.0048 mm2 43.75 mW/mm2

Register File (x2) 0.0058 mm2 49.66 mW/mm2

PE Logic (x2) 0.0994 mm2 28.21 mW/mm2

L1 CAM (4 KB) 0.0286 mm2 66.56 mW/mm2

L1 Load Queue 0.0072 mm2 56.29 mW/mm2

Total / Peak 0.1458 mm2 66.56 mW/mm2

CACTI-3DD [15] and an existing FPU design [23]. These

hardware components are assumed to be fabricated in the 22

nm technology. According to prior studies [73], the area of

compute-logic fabricated in the DRAM process could be up

to 2x larger than the one fabricated in the CMOS process due

to the less number of metal layers. Thus we multiply all area

results from CACTI-3DD and existing FPU design by 2x to

estimate the area of these components in the DRAM process.

The area of hardware components in a bank group is shown

in Table II. As shown in Table II, SpaceA only has an area

overhead of 0.1458 mm2 on the bank group level, which is

only 4.86% of the area of a bank group and 5.96% of the area

of memory banks. Thus the design of SpaceA has very little

area overheads when integrating PE with memory banks. We

estimate the area of L2 CAM and L2 load queue which reside

on the base die in a similar way. In the default configuration,

the area of an L2 CAM is 0.1898 mm2 and the area of an L2

load queue is 0.0760 mm2. The area of these two components

is 0.2658 mm2 in total, which is 8.86% area of a vault. The

base die in the vanilla HMC memory has 10% to 30% area

budget where other prior work integrates compute-logic [4],

[24]. As long as the area of components on the base die does

not exceed this budget, these components do not introduce any

area overhead. In our work, we conservatively assume that the

area budget on the base die is only 10%, thus the area of our

L2 CAM and load queue is still within such a conservative

area budget.

Recent research studies [73] and industrial prototypes [62]
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Fig. 6. Performance metric comparisons between the naive mapping and our proposed mapping: (a) normalized workload, (b) L1 CAM hit rate, (c) L2 CAM
hit rate, and (d) traffic between bank groups and vaults (TSV and NoC) with respect to that of the naive mapping.

have demonstrated the feasibility of fabricating compute-logic

in the DRAM process. However, the thermal issue is still

a well-known challenge for PIM architecture based on 3D

memory [20], [34]. We demonstrate the power density of

components on DRAM dies in Table II. As shown in Table II,

the peak power density per footprint is 532.48 mW/mm2

(66.56 mW/mm2 x 8 layers), which is under the constraint of

power density from both commodity server active cooling [46]

(706 mW/mm2) and high-end server active cooling [20]

(1214 mW/mm2).

C. Mapping

In this section, we discuss performance metrics and power

breakdown in detail in order to gain a better understanding of

the source of these performance and energy efficiency benefits

from our proposed mapping method.

Workload Balance. Since the performance of SpMV in

SpaceA is bounded by the slowest PE, one goal of the

proposed mapping method is to balance workloads among

PEs. To quantify the workload balance, we do the following.

First, we define the amount of work done by a PE to be

the number of non-zero elements processed by it. Next, we

define normalized workload, which indicates the ratio of the
average amount of work done across all the PEs and the

maximum amount of work done by any single PE. We use

the normalized workload to represent the quantitative metric

for workload balance (higher the better). The choice of the

denominator in this ratio calculation is explained by the fact

that workload balance is bottlenecked by the slowest PE, i.e.,

the PE which does the largest amount of work. In the ideal case

where non-zero elements are evenly distributed among PEs,

the normalized workload should equal one due to the equiv-

alence between the average and the maximum PE workloads.

The difference of normalized workload between the naive

mapping and the proposed mapping is shown in Figure 6(a).

Figure 6(a) shows that the normalized workload of the naive

mapping is only 81% of that of the proposed mapping on

average, which indicates that the maximum PE workload in the

proposed mapping is only 81% of that in the naive mapping.

The smaller maximum PE workload demonstrates a better

workload balance in the proposed mapping.

Locality Improvement. In the flow of our proposed map-
ping method, we consider locality optimization. To demon-

strate the locality improvement in the proposed mapping,

we profile the hit rate of both L1 CAM and L2 CAM,

the traffic on TSV for intra-vault communication, and the

traffic on NoC for inter-vault communication. Since intra-vault

communication through TSVs has a uniform latency while

inter-vault communication through NoC has non-deterministic

latency, we define the traffic of TSV as the amount of data

transferred through TSVs and the traffic of NoC as the size

of a packet multiplied by the distance between the source and

the destination of the packet. Figure 6(b)-(d) demonstrate these

profiling results. Overall, Figure 6(d) shows that the traffic on

TSV and NoC is only 33.11% and 38.89% with respect to that

of the naive mapping, which indicates a significant amount

of communication savings resulted from the improvement of

the locality. In details, Figure 6(b) shows that the proposed

mapping improves the average L1 CAM hit rate of all L1

CAMs significantly from 18% and 78% on average while

Figure 6(c) shows that the L2 CAM hit rate decreases in the

proposed mapping from 47.09% to 31.93%. The main reason

for the decreasing L2 CAM hit rate comes from the reduction

of requests to L2 CAM with the same amount of cold miss.

As a result, the saving of NoC traffic is less than the saving

of TSV traffic.

Energy Breakdown. To understand the energy efficiency
between the naive mapping and the proposed mapping method,

we demonstrate the energy consumption breakdown for these

two mapping methods. We normalize the energy consumption

of different parts into the energy consumption of DRAM

dynamic power mapped by the naive mapping. We divide the

overall energy consumption into four parts. The first part is the

DRAM dynamic power. The second part is the dynamic power

of PE, L1 CAM with its load queue, and L2 CAM with its load

queue. The third part is the dynamic power of interconnect,

which includes TSV and NoC. The last part is the static power

of the whole chip. The energy breakdown of these four parts

for the naive mapping and the proposed mapping is shown in

Figure 8. We have several observations from Figure 8. First,

the dynamic power of hardware components added by SpaceA

design is negligible (PE & L1 & L2 dynamic). Second, 65.55%

on average of the dynamic power of interconnect is saved by

the proposed mapping, which is the result of a reduced traffic

amount on TSV and NoC shown in Figure 6(d). Finally, the

proposed mapping method saves 54.05% energy consumption

of the static power part: the result of improved performance.

The static power dominates the overall energy consumption in
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Fig. 8. The energy consumption breakdown of SpaceA for the naive mapping
(denoted as N) and our proposed mapping (denoted as P).

matrix 7, 12, and 13. The energy consumption of static power

is saved in the proposed mapping method of the matrix 7 due

to a 3.87x speedup over the naive mapping. Matrix 12 and

13 have a relatively poor access pattern, thus pushing heavy

traffic in the interconnect and resulting in a long execution

time while DRAM banks and PEs are idle in most of the

cycles.

D. Sensitivity Study

We conduct sensitivity studies for L1 CAM, L2 CAM, and

TSV transfer latency to justify the selected design points in

SpaceA architecture.

L1 and L2 CAM Sensitivity Study. We study the perfor-
mance sensitivity of L1 and L2 CAM by varying either the

number of sets or the number of ways. The average speedups

compared to GPU for different numbers of sets and different

numbers of ways in L1 and L2 CAM are shown in Figure 7(a)-

(d). As shown in Figure 7(a) and (b), the performance of

SpaceA is not sensitive to the size of L1 CAM. Although

varying the number of ways could help the average speedup

from 13.43 to 13.80, the benefit from such a large number of

ways is relatively insignificant. Therefore, we keep the number

of sets as small and the number of ways as large, resulting in

the design with an L1 CAM composed of 32 sets and 4 ways

per set. As shown in Figure 7(c) and (d), the performance

is moderately sensitive to L2 CAM settings. Although the

changes of speedup are not significant, these speedup changes

are still noticeable, from 11x to 15x, among different CAM

settings. Since L2 CAM can be as large as within the area

budget, we study the trade-off between the performance and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

Ex
ec

ut
io

n 
Ti

m
e

Matrix ID

 Latency=1   Latency=2   Latency=4  
 Latency=8   Latency=16

Geo.
Mean

Fig. 9. The sensitivity of performance to TSV transfer latency.

L2 CAM area as shown in Figure 7(e). Figure 7(e) shows

that a larger L2 CAM usually result in a better speedup. Thus

we select the largest one under our area budget, 10% area of

a vault. Figure 7(e) also shows that our proposed mapping

algorithm can leverage a smaller L2 CAM while achieving a

better performance compared to the naive mapping. The naive

mapping with an L2 CAM as large as 0.76 mm2 achieves

only a 68.61% speedup of the proposed mapping with an L2

CAM as small as 0.09 mm2. The results further demonstrate

the advantage of our proposed mapping method in terms of

efficient hardware resource usage.

TSV Sensitivity Study. Most of PIM architecture design

based on 3D memory technology leverages the low latency

of TSV data transfer. We conduct a sensitivity study for

TSV latency by varying the latency setting in our perfor-

mance simulator. Figure 9 shows the performance slowdown

of different TSV data transfer latency. Figure 9 shows that

there is little difference between the latency of 1 cycle or

2 cycles for most of matrices. For the scenario where TSV

transfer is 4 cycles, some matrices are not affected significantly

(within 10% performance slowdown) while some matrices

exhibit significant performance slowdown up to 2x. Thus the

average slowdown of the performance is 1.3x, a factor which

can hardly be ignored. When the TSV transfer latency is

increased to 16 cycles, the performance incurs a 2x slowdown

on average. In summary, our design is not sensitive to the TSV

latency when it is low enough while the performance of design

will start to degrade when the TSV latency is large enough,

which justifies the reason for a design based on 3D memory

technology bringing the low latency of TSV transfers.
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TABLE III
THE SPEEDUP COMPARISON AMONG TESSERACT, GRAPHP, AND SPACEA
FOR PAGERANK (PR) AND SINGLE-SOURCE SHORTEST PATH (SSSP)
ALGORITHMS ON WIKI (WK) AND LIVEJOURNAL (LJ) DATASETS OVER

CPU BASELINE.

Tesseract GraphP SpaceA
PR + WK 18.19 22.58 29.73
SSSP + WK 43.70 52.17 103.57
PR + LJ 21.09 34.08 58.34
SSSP + LJ 40.10 42.83 51.47

E. Scalability

We show the scalability of SpaceA by increasing the num-

ber of cubes in Figure 10. Figure 10 shows that SpaceA

with 32 cubes achieves 1.42x speedup and SpaceA with 64

cubes achieves 1.8x speedup on average compared to the

default configuration. These results reveal moderate scalability

where overheads come from a more expensive inter-vault

communication with an increase of cube amount. Although

the scalability of SpaceA is moderate, the memory capacity

of baseline design (64 GB) is able to accommodate most of

the matrices from the University of Florida collection (max

size about 50 GB) [19]. When the number of cubes increases,

the latency of memory access to other cubes becomes larger,

which makes the size of the current PE queue not large enough

to hide the latency of remote memory access. Using a larger

PE queue and L1 load queue to exploit larger memory-level

parallelism (MLP) will introduce a larger area overhead in the

bank group level.

F. Case Study: Graph Analytics

Since SpMV is a building primitive in many application

domains, such as scientific computing and graph analytics,

SpaceA can be used to accelerate these applications. In order

to study the performance benefits of SpaceA for these appli-

cations, we conduct a case study of running graph workloads

on SpaceA, and compare the performance with state-of-the-

art graph accelerators, Tesseract [4] and GraphP [76]. For

comparing both Tesseract and GraphP, we use algorithms and

input graphs evaluated in both of them. As a result, we use

PageRank (PR) and Single-Source Shortest Path (SSSP) algo-

rithms and Wiki (WK) and LiveJournal (LJ) input graphs [36]

in this case study. Then, we run the implementation of these

two algorithms from the GAP benchmark [11] on NVIDIA

DGX-1 server (Intel Xeon CPU E5-2698 x2) as the baseline.

To obtain the performance on SpaceA, we rewrite SSSP and

PR algorithms into iterations of SpMV [33], and run them on

SpaceA under the same number of cubes, vaults, and memory

banks as the Tesseract configuration. We assume Tesseract and

GraphP can obtain the same speedup as claimed in their paper,

and the speedup of Tesseract, GraphP, and SpaceA over CPU

is summarized as Table III. This assumption overestimates

the performance of Tesseract and GraphP because our CPU

baseline is more performant than theirs. Specifically, the CPU

in our baseline has more cores (40 vs. 32), the same L1

and L2 cache per core while larger L3 cache in total (100

MB vs. 32 MB), and higher memory bandwidth (153.6 GB/s

vs. 102.4 GB/s). Moreover, we use a well-optimized GAP

benchmark as the CPU baseline instead of in-house C++

implementations used in Tesseract [4]. The results in Table III

show that SpaceA obtains better performance than Tesseract

and GraphP despite the overestimation of their speedups.

The performance improvement of SpaceA mainly comes from

the higher bandwidth provided by the near-bank integration

instead of placing compute-logic on the base die. In summary,

SpaceA can significantly accelerate graph analytics and it

has the potentials to benefit other workloads built on SpMV

computation.

VI. RELATED WORK

SpMV workloads. The study on efficient SpMV imple-

mentation starts from the CPU platform where the explo-

ration of the locality of SpMV computations to efficiently

use the memory bandwidth plays a major role [31], [44],

[49], [66]. GPU provides massive memory-level parallelism

and high memory bandwidth, which makes it a promising

solution when it comes to accelerating SpMV workloads [13].

Although existing studies develop efficient implementations

for the widely used compressed sparse row (CSR) format

on GPUs [25], [45], new matrix compression formats, such

as AMB [47], BRO [60], Cocktail [59], BCSC [69], and

BCCOO [71], are proposed to address the challenges of irreg-

ular memory access and workload imbalance across different

processing units in more efficient and scalable manners. The

road-map for SpMV on other many-core architectures, such

as Intel Xeon Phi and Intel Knight Landing, is similar to

GPGPU where customized matrix compression formats [43],

[61], [68] are designed together with the parallel algorithms

SpMV to partition workloads across cores. Although these

studies exploit existing memory bandwidth very well, they

can not overcome the problem of limited memory bandwidth.

Unlike these prior works optimizing SpMV on multi-core

(CPU) or many-core processors (GPU), we exploit PIM-based

architecture for superior bandwidth to overcome the bandwidth

problem in multi-core and many-core processors.

PIM and NDP accelerators. There are several studies
for PIM and NDP architectures in recent years for general

purpose programs on different memory technologies, such

as non-volatile memory (NVM) [22], [40] and DRAM [5],

[39], [56], [73], [75]. These architectures are usually equipped

with compute logic designed for basic arithmetic primitives

to support general purpose programs. Meanwhile, PIM ar-



chitectures are also very promising in accelerator designs,

which are customized for specific application domains, such as

neural networks, block-chain [67], and image processing [26]

workloads. In particular, many neural network workloads

are memory intensive [70], thus prior studies exploit PIM

architectures for different application phases: both training [8],

[16], [27], [41], [53], [57] and inference phases [6], [17],

[24], [32], [35], [55], [63]. Among these application domains

prior work studied for exploiting PIM architectures, graph

analytics is the closest to SpMV workloads. In the vertex-

centric programming model, a graph algorithm is equivalent

to multiple iterations of SpMV when edges are stored in

an adjacency matrix. Prior work studied graph workloads in

PIM architectures for various memory technologies [4], [18],

[48], [58] and efficient graph data partition methods [76]. Our

case study in Section V-F shows that SpaceA achieves higher

performance than prior designs placing compute-logic on the

base die because of higher effective bandwidth exploited at the

memory bank level. Prior studies have also exploited similar

sparse linear algebra primitives, such as sparse matrix-matrix

multiplication (SpGEMM) [79]. However, SpGEMM is very

different from SpMV because of its poor data reuse opportu-

nity. Other research discussing in-memory computing for the

scientific workloads [21] has also been conducted. However,

these studies do not use compact sparse formats leading to both

storage and performance overheads. Overall, different from

all of these PIM accelerators, SpaceA is the first to design

lightweight compute-logic near DRAM banks for irregular

workloads whose memory access pattern is highly irregular

thus introducing challenges for increasing the utilization of

bank-level memory bandwidth.

Sparse linear algebra primitive accelerators. There are
prior studies designing accelerators for SpMV [52] or other

sparse linear algebra primitives [7], [30]. In particular, because

of the model compression techniques for neural network

applications, such as weight pruning [29] and weight quan-

tization [64], a lot of dense linear algebra primitives are trans-

formed to sparse ones. As a result, these sparse neural network

training and inference workloads attract intensive attention to

accelerator designs for sparse linear algebra primitives [42],

[50], [77], [78]. Although these studies optimize SpMV for

better locality or workload balance for on-chip computation,

these compute-centric hardware designs have limited memory

bandwidth. SpaceA exploits a PIM-based architecture superior

bandwidth to overcome the bandwidth problem in CPU, GPU,

and compute-centric accelerators.

VII. DISCUSSION

System and programming interface: Since SpaceA is

designed as a standalone accelerator attached to the PCIe bus,

it copies the sparse matrix and input vector from the CPU,

offloads the computation of SpMV, and finally copies the out-

put vector back to the CPU. The software support of SpaceA

needs to provide APIs for memory allocation, data transfer,

and SpMV computation invocation so that CPU programs

can offload SpMV computation to SpaceA. Because the data

format is different between sparse matrices and vectors, these

two data structures need different driver APIs to support data

allocation and transfer. Additionally, the sparse matrix needs

to be pre-processed on the CPU for assigning different rows

across PEs before it is transferred to SpaceA. This execution

model has been proven practical by prior studies offloading

SpMV into GPU [47], [59], [60], [71].

HMC vs. HBM: Although our architecture design of

SpaceA is demonstrated and evaluated based on HMC-like

configuration, SpaceA can also be realized by HBM [2]

achieving similar performance and power under an equivalent

configuration. The effectiveness of SpaceA architecture design

mainly relies on two perspectives, near-bank logic integration

and low latency communications for banks within the same

channel. Although memory banks are grouped into the same

channel horizontally in HBM while vertically in HMC, both

of these two architectures have low latency TSV for com-

munications among banks in the same channel. Therefore, the

proposed approach would be applicable to HBM with a similar

conclusion on performance and energy improvement.

VIII. CONCLUSION

In this paper, we design an accelerator, SpaceA, based on

PIM architecture by integrating compute-logic at the memory

bank level to provide orders of magnitude higher effective

bandwidth than GPU for SpMV computation. To exploit such

a high bandwidth, our PE design is composed of a queue that

holds memory requests to hide the latency of memory access to

data in other memory banks. To exploit locality and to reduce

traffic among memory banks, we integrate CAM buffers in

SpaceA to cache data from the input vector. In addition to

the architecture design, we develop a mapping scheme for

SpaceA to balance workload and exploit locality among PEs.

Our evaluation of 15 real-world matrices shows that SpaceA

is highly competitive in terms of performance and energy-

efficiency compared to the state-of-the-art GPU baseline.
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[11] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[12] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph
processing: Workload characterization on an ivy bridge server,” in 2015
IEEE International Symposium on Workload Characterization. IEEE,
2015, pp. 56–65.

[13] N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
conference on high performance computing networking, storage and
analysis. ACM, 2009, p. 18.

[14] E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable matrix
computations on large scale-free graphs using 2d graph partitioning,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2013 International Conference for. IEEE, 2013, pp. 1–12.

[15] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked dram
main memory,” in Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 2012, pp. 33–38.

[16] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang,
“Time: A training-in-memory architecture for memristor-based deep
neural networks,” in Proceedings of the 54th Annual Design Automation
Conference 2017. ACM, 2017, p. 26.

[17] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, no. 3. IEEE Press, 2016, pp. 27–
39.

[18] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie,
and H. Yang, “Graphh: A processing-in-memory architecture for large-
scale graph processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2018.

[19] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, p. 1, 2011.

[20] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die-
stacked processing in memory,” 2014.

[21] B. Feinberg, U. K. R. Vengalam, N. Whitehair, S. Wang, and E. Ipek,
“Enabling scientific computing on memristive accelerators,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), June 2018, pp. 367–382.

[22] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2018, pp. 1–14.

[23] S. Galal, O. Shacham, J. S. Brunhaver II, J. Pu, A. Vassiliev, and
M. Horowitz, “Fpu generator for design space exploration,” in 2013
IEEE 21st Symposium on Computer Arithmetic. IEEE, 2013, pp. 25–
34.

[24] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
ACM SIGOPS Operating Systems Review, vol. 51, no. 2, pp. 751–764,
2017.

[25] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multi-
plication on gpus using the csr storage format,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 2014, pp. 769–780.

[26] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “ipim:
Programmable in-memory image processing accelerator using near-bank
architecture,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2020, pp. 804–817.

[27] P. Gu, X. Xie, S. Li, D. Niu, H. Zheng, K. T. Malladi, and Y. Xie,
“Dlux: a lut-based near-bank accelerator for data center deep learning
training workloads,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

[28] R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yalaman-
chili, and H. Kim, “Demystifying the characteristics of 3d-stacked mem-
ories: A case study for hybrid memory cube,” in 2017 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2017, pp.
66–75.

[29] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[30] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator for
sparse tensor algebra,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 319–333.

[31] E.-J. Im and K. A. Yelick, Optimizing the performance of sparse matrix-
vector multiplication. University of California, Berkeley, 2000.

[32] Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and
Y. Xie, “Fpsa: A full system stack solution for reconfigurable reram-
based nn accelerator architecture,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 733–747.

[33] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[34] M. J. Khurshid and M. Lipasti, “Data compression for thermal miti-
gation in the hybrid memory cube,” in 2013 IEEE 31st International
Conference on Computer Design (ICCD). IEEE, 2013, pp. 185–192.

[35] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neu-
rocube: A programmable digital neuromorphic architecture with high-
density 3d memory,” in Computer Architecture (ISCA), 2016 ACM/IEEE
43rd Annual International Symposium on. IEEE, 2016, pp. 380–392.

[36] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[37] J. Li, G. Tan, M. Chen, and N. Sun, “Smat: an input adaptive auto-tuner
for sparse matrix-vector multiplication,” in ACM SIGPLAN Notices,
vol. 48, no. 6. ACM, 2013, pp. 117–126.

[38] K. Li, W. Yang, and K. Li, “Performance analysis and optimization
for spmv on gpu using probabilistic modeling,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 1, pp. 196–205, 2015.

[39] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2017, pp. 288–301.

[40] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Proceedings of the 53rd Annual Design
Automation Conference. ACM, 2016, p. 173.

[41] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2018, pp. 656–669.

[42] L. Liu, Z. Qu, L. Deng, F. Tu, S. Li, X. Hu, Z. Gu, Y. Ding, and
Y. Xie, “Duet: Boosting deep neural network efficiency on dual-module
architecture,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2020, pp. 738–750.

[43] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” in
Proceedings of the 27th international ACM conference on International
conference on supercomputing. ACM, 2013, pp. 273–282.

[44] J. Mellor-Crummey and J. Garvin, “Optimizing sparse matrix–vector
product computations using unroll and jam,” The International Journal
of High Performance Computing Applications, vol. 18, no. 2, pp. 225–
236, 2004.

[45] D. Merrill and M. Garland, “Merge-based sparse matrix-vector multipli-
cation (spmv) using the csr storage format,” in ACM SIGPLAN Notices,
vol. 51, no. 8. ACM, 2016, p. 43.

[46] D. Milojevic, S. Idgunji, D. Jevdjic, E. Ozer, P. Lotfi-Kamran, A. Panteli,
A. Prodromou, C. Nicopoulos, D. Hardy, B. Falsari et al., “Thermal
characterization of cloud workloads on a power-efficient server-on-
chip,” in 2012 IEEE 30th International Conference on Computer Design
(ICCD). IEEE, 2012, pp. 175–182.

[47] Y. Nagasaka, A. Nukada, and S. Matsuoka, “Adaptive multi-level
blocking optimization for sparse matrix vector multiplication on gpu,”
Procedia Computer Science, vol. 80, pp. 131–142, 2016.

[48] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim:
Enabling instruction-level pim offloading in graph computing frame-



works,” in High Performance Computer Architecture (HPCA), 2017
IEEE International Symposium on. IEEE, 2017, pp. 457–468.

[49] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-
vector multiplication,” in Proceedings of the 1999 ACM/IEEE conference
on Supercomputing. ACM, 1999, p. 30.

[50] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58–70.

[51] Y. Saad, Iterative methods for sparse linear systems. Society for
Industrial and Applied Mathematics, 2003, vol. 82.

[52] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Efficient spmv operation for large and highly sparse matrices us-
ing scalable multi-way merge parallelization,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 347–358.

[53] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A scalable
near-memory architecture for training deep neural networks on large
in-memory datasets,” arXiv preprint arXiv:1803.04783, 2018.

[54] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayap-
pan, “Automatic selection of sparse matrix representation on gpus,” in
Proceedings of the 29th ACM on International Conference on Super-
computing. ACM, 2015, pp. 99–108.

[55] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[56] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “Mcdram:
Low latency and energy-efficient matrix computations in dram,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2613–2622, 2018.

[57] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE,
2017, pp. 541–552.

[58] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in High Performance Computer Archi-
tecture (HPCA), 2018 IEEE International Symposium on. IEEE, 2018,
pp. 531–543.

[59] B.-Y. Su and K. Keutzer, “clspmv: A cross-platform opencl spmv
framework on gpus,” in Proceedings of the 26th ACM international
conference on Supercomputing. ACM, 2012, pp. 353–364.

[60] W. T. Tang, W. J. Tan, R. Ray, Y. W. Wong, W. Chen, S.-h. Kuo,
R. S. M. Goh, S. J. Turner, and W.-F. Wong, “Accelerating sparse
matrix-vector multiplication on gpus using bit-representation-optimized
schemes,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. ACM,
2013, p. 26.

[61] W. T. Tang, R. Zhao, M. Lu, Y. Liang, H. P. Huynh, X. Li, and
R. S. M. Goh, “Optimizing and auto-tuning scale-free sparse matrix-
vector multiplication on intel xeon phi,” in Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization. IEEE Computer Society, 2015, pp. 136–145.

[62] UPMEM, “The true Processing-In-Memory
accelerator,” 2020. [Online]. Available:
https://www.hotchips.org/hc31/HC31 1.4 UPMEM.FabriceDevaux.v2 -
1.pdf

[63] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie, “Snrram:
an efficient sparse neural network computation architecture based on
resistive random-access memory,” in Proceedings of the 55th Annual
Design Automation Conference. ACM, 2018, p. 106.

[64] P. Wang, X. Xie, L. Deng, G. Li, D. Wang, and Y. Xie, “Hitnet: Hybrid
ternary recurrent neural network,” in Advances in Neural Information
Processing Systems, 2018, pp. 604–614.

[65] C. Weis, N. Wehn, L. Igor, and L. Benini, “Design space exploration
for 3d-stacked drams,” in 2011 Design, Automation & Test in Europe.
IEEE, 2011, pp. 1–6.

[66] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Supercomputing, 2007. SC’07. Proceedings of the
2007 ACM/IEEE Conference on. IEEE, 2007, pp. 1–12.

[67] K. Wu, G. Dai, X. Hu, S. Li, X. Xie, Y. Wang, and Y. Xie, “Memory-
bound proof-of-work acceleration for blockchain applications,” in Pro-
ceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1–6.

[68] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang, “Cvr:
efficient vectorization of spmv on x86 processors,” in Proceedings of the
2018 International Symposium on Code Generation and Optimization.
ACM, 2018, pp. 149–162.

[69] X. Xie, D. Du, Q. Li, Y. Liang, W. T. Tang, Z. L. Ong, M. Lu,
H. P. Huynh, and R. S. M. Goh, “Exploiting sparsity to accelerate
fully connected layers of cnn-based applications on mobile socs,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 17, no. 2,
pp. 1–25, 2017.

[70] X. Xie, X. Hu, P. Gu, S. Li, Y. Ji, and Y. Xie, “Nnbench-x: Bench-
marking and understanding neural network workloads for accelerator
designs,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp. 38–
42, 2019.

[71] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaspmv: yet another spmv
framework on gpus,” in Acm Sigplan Notices, vol. 49, no. 8. ACM,
2014, pp. 107–118.

[72] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-vector
multiplication on gpus: implications for graph mining,” Proceedings of
the VLDB Endowment, vol. 4, no. 4, pp. 231–242, 2011.

[73] A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh,
and N. S. Kim, “In-dram near-data approximate acceleration for gpus,”
in Proceedings of the 27th International Conference on Parallel Archi-
tectures and Compilation Techniques, 2018, pp. 1–14.

[74] A. Yoo, A. H. Baker, R. Pearce et al., “A scalable eigensolver for large
scale-free graphs using 2d graph partitioning,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 63.

[75] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: throughput-oriented programmable processing
in memory,” in Proceedings of the 23rd international symposium on
High-performance parallel and distributed computing. ACM, 2014,
pp. 85–98.

[76] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in High Performance Computer
Architecture (HPCA), 2018 IEEE International Symposium on. IEEE,
2018, pp. 544–557.

[77] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 261–274.

[78] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern
gpus,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 359–371.

[79] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Ac-
celerating sparse matrix-matrix multiplication with 3d-stacked logic-in-
memory hardware,” in High Performance Extreme Computing Confer-
ence (HPEC), 2013 IEEE. IEEE, 2013, pp. 1–6.


