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Abstract Matrix-vector multiplication is the key operation for many computationally intensive algorithms. The emerging

metal oxide resistive switching random access memory (RRAM) device and RRAM crossbar array have demonstrated a

promising hardware realization of the analog matrix-vector multiplication with ultra-high energy efficiency. In this paper,

we analyze the impact of both device level and circuit level non-ideal factors, including the nonlinear current-voltage

relationship of RRAM devices, the variation of device fabrication and write operation, and the interconnect resistance as

well as other crossbar array parameters. On top of that, we propose a technological exploration flow for device parameter

configuration to overcome the impact of non-ideal factors and achieve a better trade-off among performance, energy, and

reliability for each specific application. Our simulation results of a support vector machine (SVM) and Mixed National

Institute of Standards and Technology (MNIST) pattern recognition dataset show that RRAM crossbar array based SVM

is robust to input signal fluctuation but sensitive to tunneling gap deviation. A further resistance resolution test presents

that a 6-bit RRAM device is able to realize a recognition accuracy around 90%, indicating the physical feasibility of RRAM

crossbar array based SVM. In addition, the proposed technological exploration flow is able to achieve 10.98% improvement of

recognition accuracy on the MNIST dataset and 26.4% energy savings compared with previous work. Experimental results

also show that more than 84.4% power saving can be achieved at the cost of little accuracy reduction.

Keywords resistive switching random access memory (RRAM), machine learning, electronic design automation, matrix-

vector multiplication, non-ideal factor

1 Introduction

Machine learning is becoming popular in a wide

range of domains. Many emerging applications, rang-

ing from image and speech recognition to natural

language processing and information retrieval, rely

heavily on machine learning techniques[1]. Matrix-

vector multiplication is of significant importance in

many applications[2-3], such as support vector machine

(SVM)[4] and deep learning algorithms[5]. Therefore,

the performance of matrix-vector multiplication has be-

come one of the most crucial considerations in accelera-
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tor designs for machine learning applications[3].

Recently, the emerging metal oxide resistive switch-

ing random access memory (RRAM) device and RRAM

crossbar array have demonstrated an efficient hardware

implementation of matrix-vector multiplication[6-8].

Based on the multilevel resistance characteristic of

RRAM device and the cross-point structure, RRAM

crossbar array can use the input voltage signal as the

vector data and save the matrix data into the RRAM

cells, which realizes matrix-vector multiplication effi-

ciently with O(1) time complexity by the nature of

merging all cells’ current in each row. Furthermore, as

a nonvolatile memory device, RRAM is an emerging ap-

proach to merging the memory and computation, which

has potential to break the “memory wall” bottleneck of

traditional von Neumann architecture. Many studies

have explored the potential of computing with RRAM

crossbar array. For example, a low power approximate

computing system, which is based on the RRAM cross-

bar implementation of matrix multiplication and neu-

ral network, has demonstrated power efficiency of more

than 400 GFLOPS/W[9].

However, although many researchers have ade-

quately demonstrated the benefit of RRAM crossbar

based computing systems, many important non-ideal

factors are neglected. Most of the previous work is

based on a simplified circuit model[8,10-11] and uses a

linear resistor to represent an RRAM device, which may

lead to inaccurate conclusions[12]. Moreover, some non-

ideal factors, such as the nonlinear voltage-current rela-

tionship of RRAM devices, the interconnect resistance,

and the resistance state deviation, may significantly in-

fluence the performance of RRAM crossbar array based

computing systems. Therefore, a detailed and compre-

hensive analysis of the impact of these non-ideal factors

is still lacking.

The contributions of this paper include:

1) We analyze the impact of various non-ideal fac-

tors on the performance of RRAM crossbar array. We

demonstrate that the RC delay of the array could be ig-

nored (about 10 ps for a 100×100 crossbar according to

our simulation). We also propose that the nonlinearity

of RRAM devices, the variation of device processing

and write operation, and interconnect resistance will

have a major influence on the computation accuracy of

output voltage. Moreover, we present that the mini-

mum resistance state of RRAM devices has little direct

impact on computation accuracy while increasing load

resistance will significantly improve computation accu-

racy.

2) We propose a technological exploration flow of

RRAM crossbar array to mitigate the impact of non-

ideal factors and realize a better trade-off among per-

formance, energy, and reliability for each specific appli-

cation. The proposed flow includes: the configuration

of technology node, RRAM resistance range, and load

resistance; the algorithm of mapping matrix parameters

to RRAM resistance states; and an iterative solution to

optimize the power and performance.

3) Finally, we use the Mixed National Institute of

Standards and Technology (MNIST) dataset and a lin-

ear SVM classifier as a case study to test the per-

formance of the proposed technology exploration flow.

Our simulation results demonstrate that the explo-

ration flow can achieve 10.98% improvement of recog-

nition accuracy and 26.4% power reduction compared

with previous work[10], and can further receive a 84.4%

power saving at the cost of little accuracy reduction.

2 Preliminaries

2.1 RRAM Characteristics and Device Model

RRAM device is a passive two-port element based

on metal oxide materials like TiOx
[13], WOx

[14], and

HfOx
[15] with variable resistance. In this paper, we use

HfOx-based RRAM for study because it is one of the

most mature RRAM materials explored[16].

Fig.1(a) demonstrates a 2D filament model of the

HfOx-based RRAM[17]. Its conductance is exponen-

tially dependent on the tunneling gap distance (d).

When a large voltage is applied on the electrodes, the

tunneling gap distance d will change due to the electric

filed and temperature-enhanced oxygen ion migration,

and the resistivity of RRAM device will switch between

the highest resistance state ROFF and the lowest resis-

tance state RON. Theoretically, an RRAM device can

achieve any resistance in the range between RON and

ROFF. This work focuses on the choice of the resistivity

of RRAM devices and other device parameters. How to

tune the RRAM device to the specific resistance state

will not be discussed in the paper.

For the HfOx-based RRAM device, the nonli-

near I-V relationship can be empirically expressed as

follows[17]:

I = I0 × exp

(

−
d



Lixue Xia et al.: Technological Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication 5

Active Electrode 

 

Tunneling Gap (d)

Oxygen
Vacancies

Residual

Filament

  

(a) (b)

Load
Resistance

M

1

2

N

1 2

RRAM

gk֒j

V

RS

Vi

Inert Electrode

V

V

Fig.1. (a) Physical model of the HfOx-based RRAM. (b) Struc-
ture of the RRAM crossbar array.

In order to analyze the device and circuit interac-

tion issues for the RRAM crossbar array based compu-

tation, we use HSPICE to simulate the circuit perfor-

mance based on a recent Verilog-A model described in

[17].

2.2 RRAM Crossbar Array

RRAM crossbar array is able to perform the ana-

log matrix-vector multiplication efficiently. Fig.1(b) il-

lustrates the structure of the RRAM crossbar array.

The relationship between the input voltage vector (Vi)

and the output voltage vector (Vo) can be expressed as

follows[8]:






Vo,1

...
Vo,M






=







c1,1 · · · c1,N
...

. . .
...

cM,1 · · · cM,N













Vi,1

...
Vi,N






. (2)

The index numbers of input and output voltages are

denoted by k (k = 1, 2, ..., N) and j (j = 1, 2, ..., M)

respectively, and the matrix parameter ck,j can be rep-

resented by the conductivity of the RRAM device (gk,j)

and the load resistor (gs) as:

ck,j =
gk,j
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instance, the interconnect resistance between two ad-

jacent RRAM cells is 2.97 Ω for 22 nm technology

node[33]. The resistance of a wire in a 100× 100 cross-

bar would be as large as 300 Ω. Since the lowest re-

sistance state of an RRAM cell is only around 500 Ω,

such a large interconnection resistance may have a sig-

nificant impact on the voltage distribution[17]. If we

take these impacts into consideration, there is a large

design space in the detailed circuit design of RRAM

crossbar array for computing, and thus a technologi-

cal exploration of RRAM crossbar array is necessary

to provide a guidance about how to choose the tech-

nology node, the resistance levels of RRAM, the load

resistance and other parameters to reduce the influence

of the non-ideal factors from a basic circuit level and

improve the circuit design.

3 Design Challenge Discussion

In this section, the non-ideal factors of RRAM cross-

bar based computing circuit are studied. Generally,

the non-ideal factors can be classified into two levels:

RRAM device level and circuit level. The device’s non-

ideal factors include the nonlinear I-V relationship of

RRAM devices, the process variation[28,34], and the

stochastic behavior of write operation[22,35-36]. These

device factors not only have impact on the computing

accuracy of RRAM-based system, but also interact with

other circuit level factors and further influence some

design decisions of the crossbar circuit. The structure

factors contain the IR-drop phenomenon[37] and the RC

delay caused by interconnect resistance. These struc-

ture factors are directly related to the behavior level

performance and restrict the limit of some design pa-

rameters. Therefore, to get an optimized design consi-

dering the trade-off relationship among accuracy, power

and other performance, the impacts of the non-ideal

factors of both device level and circuit level need to be

analyzed first.

Especially, the sneak path problem[38] will not be a

major problem when RRAM crossbar array is used for

computation. To further explain, the sneak path prob-

lem occurs only in memory applications when one word

line and one bit line are selected for each write or read

operation and the unselected lines will have negative

impact on the accuracy of output signals. In matrix-

vector multiplication applications, all the lines will be

selected and the sneak path problem will be eliminated.

As the goal of this paper is to explore design

methodologies for efficient computing systems based on

RRAM crossbar array, the computation error rate in

different cases should be one of the major metrics to

evaluate the impact of different factors. The computa-

tion error rate of output voltage can be defined as:

ǫ = max

∣

∣

∣

∣

Vactual − Vtheoretical
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smaller RRAM resistance state with a smaller tunnel-

ing gap distance d will result in a more linear I-V re-

lationship under different voltages. Therefore, in order

to achieve a more linear I-V relationship of RRAM de-

vices, both the RRAM resistance state (the tunneling

gap distance d) and the applied voltage (V ) should be

confined.
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Fig.2. RRAM resistance states under different tunneling gap
distances (d) and different applied voltages (V ). The two verti-
cal lines intersect the tilted dotted line with two points, repre-
senting the same voltage deviation (5%) from approximate linear
resistance state at different distances (d) with distinct applied
voltage. Both the tunneling gap distance d and the applied
voltage (V ) should be limited to achieve an approximate linear
resistance state at V ≈ 0 for a better computation result.

3.1.2 Variation of Device and Operation

The variations of RRAM device when processing

computation can be caused by the variations in device

fabrication and the stochastic write behavior during

write operation[22]. The fabrication variation includes

geometric device-to-device variations, such as length

and width variations, oxide thickness variations, and

the surface roughness[39]. Just as mentioned in (1), the

RRAM resistance state has an exponential dependence

on the tunneling gap distance (d). Therefore, the de-

vice variations may have obvious impact on the RRAM-

based computing system accuracy. The write variations

are mainly determined by the fluctuation of the number

of vacancies and the changes in filament geometry dur-

ing set and reset transient of RRAM[22,36], which leads

to a stochastic write result even for the same RRAM

cell.

This work focuses on the influence of non-ideal

factors on computing operation instead of the factors

themselves. From a more general view, both these two

kinds of variations can be regarded as a stochastic fluc-

tuation on RRAM resistance of each cell. Although the

RRAM device can be theoretically tuned to any resis-

tance value, the unpredictable deviation makes two re-

sistance values indistinguishable if they are in the resis-

tance’s deviation range of each other. Therefore, given

the variation degree, the maximum amount of resis-

tance levels is limited by the maximum and minimum

value range of an RRAM cell, which further determines

the quantization precision of the numerical value saved

in RRAM device.

Specifically, if the maximum deviation ratio of the

device is δ, the neighboring two resistance levels Rlower

and Rhigher should satisfy the following inequality to

distinguish them:

Rlower +Rlower × δ < Rhigher −Rhigher × δ.

Thus the constraint of neighboring layers is:

Rhigher



8 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

3.2 Non-Ideal Factors of Crossbar Structure

As the technology node continues to scale down, the

parasitic parameters induced by interconnects in cross-

bar structure can exert negative influence on the perfor-

mance of the circuit. In this paper, two major impacts

are studied: the RC delay and the interconnect resis-

tance.

3.2.1 RC Delay

RC delay may have a negative impact on the

operating speed of RRAM crossbar array based

computation[41]. However, the RC delay for RRAM

crossbar array is trivial (around 10 ps according to our

simulation results) when the wire length between two

adjacent junctions is around tens of nanometers for a

100 × 100 RRAM crossbar array. Therefore, the RC

delay is not a major consideration of the RRAM cross-

bar array based computing system design. The design

should focus on the performance of peripheral circuits

which may significantly impact the operating speed.

3.2.2 Impact of Interconnect

In order to analyze the impact of interconnect re-

sistance on output voltage computation accuracy, a

SPICE simulation of the worst-case scenario is con-

ducted as a corner case to guarantee the computation

accuracy in normal cases. A worst-case scenario is de-

fined that all the input voltages of the RRAM crossbar

array are of the same amplitude and the worst result

can be reflected by the output port which is the far-

thest away from the input ports, while all the RRAM

cells are in the lowest resistance states RON. The load

resistance (RS) is set to 5 kΩ and the lowest resistance

state of RRAM cells (RON) is set to 1 kΩ. The am-

plitude of input voltages is set to 0.9 V. The crossbar

size is varied from 5× 5 to 100× 100 and the computa-

tion error rate is tested as defined in (2) under different

technology nodes. The interconnect resistance between

two adjacent junctions is 4.53 Ω, 2.97 Ω, and 1.55 Ω, re-

spectively, for a 4F 2 RRAM crossbar structure, where

F is the feature size of RRAM device, under 16 nm,

22 nm, and 32 nm technology node according to the

International Technology Roadmap for Semiconductors

2013[33]. An ideal case without any interconnect resis-

tance is also simulated as a comparison.

The results are demonstrated in Fig.3. When the

interconnect resistance (RInterconnect) is neglected, the

computation error rate decreases with the rise of cross-

bar size N×N . To be specific, the equivalent resistance

of the N shunt RRAM cells in a column will drop while

the load resistance in that column remains the same.

The decreased voltage applied on the RRAM cells will

result in better linearity, making the crossbar array rep-

resent the matrix more accurately as described in (3).

Therefore, the computation accuracy increases with the

crossbar size. However, when the interconnect resis-

tance is taken into consideration, the computation error

rate will decrease at the beginning and finally increase

due to the voltage drop on the interconnect resistance.

Therefore, under the interaction of the nonlinearity of

RRAM cells and interconnect resistance, there will be

an optimal crossbar size N × N for each technology

node in the worst-case scenario, and the optimal cross-

bar size will shift slightly as the technology node scales

down. On the other hand, if the crossbar size is re-

stricted by the application, the smaller technology node

leads to higher error rate, as shown in Fig.3. These re-

sults imply that the nonlinearity of RRAM cells and

interconnect resistance should be considered together

to realize a better implementation of the matrix-vector

multiplication operations.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

Crossbar Size

E
rr

o
r 

R
a
te

 (
%

)

 

 

 RInterconnect= 0

16 nm Tech. Node
22 nm Tech. Node
32 nm Tech. Node

Fig.3. Worst-case computation error rates (ǫ) of RRAM cross-
bar arrays with different crossbar array sizes (N × N) and dif-
ferent technology nodes. The RRAM resistance states are cal-
culated at V ≈ 0.

4 Technological Exploration Flow of RRAM

Crossbar Array

According to the analysis in Section 3, the non-ideal

factors can influence the performance of RRAM cross-

bar array through three design parameters: the load

resistance RS interacted with nonlinear I-V relation-

ship, the resistance levels limited by variation, and the

technology node of interconnect lines that influences the

IR-drop phenomenon. These three parameters form the

design space of an RRAM crossbar array for a matrix-

vector multiplication application like SVM. In order to
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overcome the impact of these non-ideal factors, we de-

scribe the proposed technological exploration flow of

RRAM crossbar array and achieve a better trade-off

among accuracy, energy and reliability.

Among the above three non-ideal factors, the inter-

connect line’s influence is independent with the other

two device factors, and is always chosen considering

the design of other peripheral CMOS circuits. Thereby

we first determine the technology node of interconnect

lines. For the other two factors caused by the device

itself, the nonlinear I-V characteristic mainly comes

from the physical mechanism of RRAM (residual fila-

ment shown in Fig.1(a)) while the variation is essen-

tially caused by the stochastic process of moving atoms.

These two factors are also independent with each other

and can be separately optimized by choosing the load

resistance RS and the resistance levels of RRAM. From

the design view, RS is more important because it cap-

tures a part of input voltage from every RRAM cell,

which introduces a computation bias into the whole

crossbar array. To deal with this problem, we propose

a numerical iteration algorithm to map the data onto

the crossbar considering the influence of RS and em-

bed this mapping algorithm into the design flow to im-

prove the computation accuracy. The resistance range

of RRAM can also influence the computation accuracy

considering the variations of RRAM cells, but increas-

ing RON can reduce the power consumption. In order

to optimize the trade-off among power, accuracy and

other parameters of the circuit, we propose an iterative

flow to explore the design space and to find the optimal

design configuration.

Fig.4 demonstrates the overview of the proposed

flow. The flow consists of five stages: 1) determine

the technology node according to characteristics of the

application; 2) choose a proper initial RS to reduce the

impact of interconnect resistance; 3) reset the resistance

range to the maximum range for iteratively optimizing
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the power and the accuracy; 4) map the application ma-

trix C to the RRAM conductance matrixesG robustly;

and 5) iteratively explore the technological design space

and optimize the performance, energy and reliability of

the system. Q is the maximum number of continuously

accuracy reduction, which is used to stop iteration. In

addition, although the crossbar size can also influence

the effect of IR-drop as shown in Fig.3, the practical

crossbar size is constrained by the characteristics of the

specific application. Consequently, the proposed de-

sign flow does not consider the configuration of RRAM

crossbar array size.

4.1 First Stage: Determining the Technology

Node

As the interconnect resistance has negative impact

on the computation accuracy of RRAM crossbar array,

the technology node should be scaled up to support ap-

plications that require a large crossbar array or high

computation accuracy. Meanwhile, the scaling down of

technology node will shrink the area of RRAM crossbar

array. Therefore, there may exist a trade-off between

the area and the computation accuracy. After the setup

of crossbar size and technology node, device level pa-

rameters can be further configured as discussed in the

next stage.

4.2 Second Stage: Choice of RS

Besides the value of interconnect resistance, many

other parameters, such as the value of RS and the resis-

tance states of RRAM cells, also influence the compu-

tation accuracy of RRAM crossbar based computation.

Since the practical computation accuracy is heavily de-

pendent on the pattern of input signals and the resis-

tance distribution of RRAM cells, large quantities of

variables form a complex design space. In order to ex-

tract the key parameters and simplify the design op-

tions, the worst-case scenario is studied so that the

negative influence of interconnect resistance can be fully

exposed.

The value of RS needs to be determined considering

RON since RS and RON influence the linearity of RRAM

cells together. Theoretically, when RS increases or RON

decreases, the voltage applied on the RRAM cells will

decline. As discussed in Subsection 3.1.1, a smaller ap-

plied voltage will result in better linearity of RRAM

devices and better computation accuracy. However, a

smaller RON can also lead to more serious impact of

the interconnect resistance. The impact of RON on the

computation accuracy is hard to predict. In order to

better study the impact of RS and RON in the worst-

case scenario as defined in Subsection 3.2, where all the

RRAM cells are set to RON, a simulation is conducted.

The crossbar size is set to 50 × 50 and the amplitude

of input voltages (which are the same) are set to 0.9 V

(about 0.1 V will be applied on the RRAM cells). The

technology node is set to 22 nm. We vary RON from

500 Ω to 5 kΩ and vary RS from 1 kΩ to 11 kΩ.

The simulation results are illustrated in Fig.5. It

demonstrates that the computation error rate decreases

exponentially with the rise of RS. Compared with RS,

the computation accuracy improves less than 1% when

RON varies from 500 Ω to 5 kΩ under the same RS.

This result indicates that RON has little direct impact

on the computation accuracy when not considering the

limited resistance levels caused by variation. Therefore,

the choice of RON can be neglected for convenience, and

the technological exploration flow should focus on the

choice of RS. To be specific, the simulation results il-

lustrated in Fig.5 can serve as a look-up table and the

technological exploration flow will first choose a proper

initial RS to satisfy the worst case and reduce the im-

pact of interconnect resistance. In addition, since the

application performance is also influenced by the prac-

tical resistance distribution of RRAM cells, a larger RS

cannot guarantee a better computation accuracy. A

smaller initial RS can be used and the optimal choice

of RS can be achieved by iteratively exploring the tech-

nological design space in the next stages of the techno-

logical exploration flow.
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4.3 Third Stage: Choice of Resistance Range

Low power consumption is one of the main advan-

tages of RRAM-based circuit[42]. Therefore many re-

searchers concern power consumption more than accu-

racy especially for the low-power applications like ap-

proximate computing[9,43]. Obviously, if we increase

the resistance of RON, the resistance value of each level

after mapping will increase, leading to a lower power

consumption of the whole crossbar shown in Fig.1(b).

However, the increasing of RON results in a smaller

resistance range of RRAM. As discussed in Subsec-

tion 3.1, given the device variation, the range of RRAM

resistance restricts the maximum amount of resistance

levels for error-free separation. For a practical com-

putation, the precision of the number saved in RRAM

cells is determined by the application requirement. As a

result, when RON rises, the distance between two neigh-

boring resistance levels gets smaller, and finally breaks

the error-free constraint. On the other hand, if the pre-

cision given by application is already larger than that

the RRAM’s characteristic can support, the decreasing

resistance range will further reduce the computation

accuracy of RRAM crossbar array. Fig.6 shows the

SPICE simulation result of different RONs and varia-

tions. Considering that the Verilog-A RRAM model

contains the resistance range from 300 Ω to 500 kΩ[17],

we select 200 kΩ as the value of ROFF to support the

variation range and change the value ofRON from 500 Ω

to 50 kΩ, and the data precision is set to be 6-bit (64

resistance levels). The result shows the relationship be-

tween accuracy and RON influenced by variation.
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power data are the average results of 150 matrix samples and
150 input samples.

To further analyze the trade-off relationship be-

tween accuracy and power, we simulate the power con-

sumption of a 50×50 crossbar when processing matrix-

vector multiplication with 5% variation. The relation-

ship between power and error rate is shown in Fig.7.

The result shows that the power reduces rapidly at first,

which means we can obtain considerable power saving

at the cost of a little accuracy. This is because when

RON is small enough, the low resistance RRAM cells

cost most of the power in the whole crossbar circuit,

and increasing their resistance can significantly reduce

the power according to the inversely proportional rela-

tionship between resistance and power. However, when

RON has already been large enough, further increasing

the RRAM resistance only has a little effect on power

saving, but can cause the rapid drop of accuracy as

shown in Fig.6. As a result, there is an inflection point

in the trade-off line. Designers can choose this point

as the optimized result, or use one parameter as a con-

straint to optimize the other one.
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Fig.7. Trade-off relationship between power and accuracy for a
50×50 crossbar array among different mapping resistance ranges.
The amount of resistance levels is 64 (6-bit precision) and the
variation is 5%.

As shown in Fig.4, the proposed flow can optimize

the above trade-off, which is a small nested loop. Af-

ter choosing RS, we need to select a resistance range

(or actually an RON for most cases) to determine the

final quantization levels of RRAM resistance according

to the precision of application. During the mapping

phase, the mapping results of resistances (or conduc-

tances) need to be quantified into the determined levels.

Finally, the estimated power and accuracy are tested

if they can satisfy the restriction provided by designers

according to the monotonic relationship between power

and accuracy. For example, if we give minimum accu-

racy as a constraint, we can gradually increase RON

and reduce the power consumption until the accuracy

is lower than the threshold, which reaches a minimum

power. Oppositely, given a maximum power cost as a

constraint, we can also gradually increase RON and find
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for the first time that the power consumption is lower

than the threshold, which reaches maximum accuracy.

In addition, when the resistance range gets too

small, the difference between different computation re-

sults will also reduce according to (2), resulting in a

new challenge to the precision of read circuit. This

phenomenon can be regarded as another restriction like

the power or accuracy restriction in the above flow and

we can also introduce this condition into the judgment

phase to further limit the design space.

4.4 Fourth Stage: Mapping Matrix Parame-

ters to RRAM Device Conductivities Ro-

bustly

The conductance states of RRAM cells in the cross-

bar array must be configured properly to realize the

multiplied matrix C. However, as shown in (3), ck,j
not only relies on the conductivity of the correspond-

ing RRAM cell gk,j , but also depends on all the RRAM

cells’ conductance states in the same j-th column in the

crossbar array. In order to realize a one-to-one mapping

between matrix C and the conductance matrix of the

RRAM crossbar array, some previous work proposed

a few simple and fast approximations to the mapping

problem like [10]:

gk,j = c′k,j × (gON − gOFF) + gOFF.

When

gs ≫ (gON − gOFF)×
N
∑

l=1

c′k,l, (6)

(3) can be approximated to:

ck,j ≈ c′k,j ×
gON
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negative parameters. In order to satisfy the condition

described in (9), (4) should be revised to:

C0 = C
+
0 −C

−

0 = α((C+ +∆)− (C− +∆)), (12)

where:

c+k,j =

{

ck,j , if ck,j > 0,
0, if ck,j 6 0,

(13)

c−k,j =

{

−ck,j , if ck,j < 0,
0, if ck,j > 0.

(14)

α and ∆ are parameters to map C
+
0 and C

−

0 to the

range described in (9). The choice of α and ∆ can

be achieved by exhausted search. In order to reduce

the search space, a restriction of α and ∆ is required.

We set cmax = max(|ck,j |). According to (9)∼(12), the

constraints of α and ∆ can be expressed as:

χmin
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is a widely used dataset with more than 60 000 hand-

written digits for optical character recognition. In our

experiment, we choose 20 000 examples of handwrit-

ten digits of “0”∼“9” to train the SVM. We extract

a 49-dimension feature through principal component

analysis (PCA)[46] from the original 28 × 28 images.

In other words, the dimension of input data x̂ is 50

when one dimension for the offset b is considered. As

there are 10 classes of handwritten digits in the MNIST

dataset, we train 10 different SVMs to distinguish only

one digit from the others. The recognition accuracy

of SVM trained on CPU is 94%. And the size of the

combined matrix W of 10 SVMs is 50 × 10. We rea-

lize this matrix with a 50 × 50 RRAM crossbar array.

All the other 40 output ports are regarded as virtual

nodes whose states will not be considered. The un-

used RRAM cells in the crossbar array are set to the

highest resistance states to reduce the extra energy con-

sumption and negative impact. Other 5 000 examples

in the MNIST dataset are used to test the performance

of RRAM-based SVM. The maximum amplitude of in-

put voltage is set to 1 V to achieve better linearity of

RRAM devices. Most of the input voltages applied on

the RRAM cells are around tens to hundreds of milli-

volt. A current comparator is used to select the port

with the highest output current and provide the recog-

nition results. We use SPICE to simulate the circuit

performance of RRAM crossbar, such as the power con-

sumption and the output voltage. A recent Verilog-A

model described in [17] is chosen as the RRAM device

model. The simulation results are provided in Table 1.

Some comparisons are made between the proposed tech-

nological exploration flow and the method based on [10]

under different technology nodes.

5.2 Performance of Matrix Mapping

Algorithm

We first compare the proposed matrix mapping al-

gorithm with the one proposed in [10] under the same

technology node. The experimental results demon-

strate that both algorithms work well when RS is very

small (RS = 100 Ω). However, as discussed in Sub-

section 4.2, such a small RS will lead to bad computa-

tion accuracy because of interconnect resistance. Only

around 80% recognition accuracy is achieved in this

situation. As for the cases with a larger RS of 3 kΩ, the

recognition accuracy of the proposed technological ex-

ploration flow significantly increases to more than 90%,

while a dramatic decrease from 90% to 9% is observed

for the previous method. These results demonstrate

that the approximation used in the previous work does

not work well for a largerRS. And the proposed method

is robust since there is no approximation used in the

mapping algorithm.

5.3 Impact of RS and Interconnects

We also increase RS to 10 kΩ to test the impact of

RS on the performance of RRAM-based SVM. We first

Table 1. Experimental Results of RRAM-Based SVM with Differnet Parameters (RON = 500 Ω)
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fix the technology node to test the impact of RS. Com-

pared with the cases when RS = 3 kΩ, the recognition

accuracy does not increase but drops from 93% to 86%.

The reason lies in that a different RS will lead to diffe-

rent RRAM conductance matrixes. The RRAM con-

ductance matrix at RS may be affected more seriously

by the variation of RRAM resistance states and the in-

terconnect resistance. Such results verify the discussion

in Subsection 4.5 that a larger RS is not necessary to

lead to better computation accuracy in practical ma-

chine learning tasks instead of the worst case. Then,

we vary the technology node of interconnection from

16 nm to 32 nm fixing RS. The results demonstrate

that a lower interconnect resistance is beneficial to the

recognition accuracy for RRAM-based SVM.

5.4 Power Saving by Resistance Range

Optimization

As mentioned in Subsection 4.3, the proposed flow

can further optimize the power consumption at the cost

of a little accuracy reduction. To verify the power op-

timization effect of the proposed method, we use an

accuracy threshold and find the minimum power con-

sumption with different interconnect technology nodes

from 18 nm to 36 nm, and the device variation is still

5%. Considering that the related RRAM-based work’s

result is about 82%[10], we use 80% as the classifica-

tion accuracy constraint. The results are shown in Ta-

ble 2. The result shows that by utilizing the trade-off

relationship between power and accuracy, about 80%

power consumption can be saved in various intercon-

nect technologies. Another experiment shows that if

we use 85% as the classification accuracy constraint,

the power consumption saving is about 70%, which is

also a considerable gain. However, according to the

trade-off relationship shown in Fig.7, further reducing

the accuracy threshold only has little effect, and thus

80%∼85% is a relatively reasonable range for power op-

timization.

Table 2. Power Saving with a Restricted Accuracy

Threshold (Initial RON = 500 Ω)
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of directly using the original data precision as Table 1

shows.

5.5.2 Impact of Signal Fluctuations

The electrical noise from the input ports will lead

to input signal fluctuation. Here we simulate the per-

formance of RRAM-based SVM under different fluctua-

tions of input signals. The results show that the pro-

posed RRAM-based SVM is robust to the signal fluc-

tuations. For example, a 10% variation of the input

signal only reduces the recognition accuracy from 92%

to 90%. These results demonstrate that the RRAM-

based SVM is able to work in the environments with

large signal fluctuations.
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Fig.8. Recognition accuracy with different RRAM resistance
resolutions under maximum variation. Each accuracy result is
the average value of four variation matrixes.

6 Conclusions

In this paper, we studied the impact of a wide range

of parameters and proposed a technology exploration

flow to configure these parameters to achieve a better

trade-off among performance, energy and reliability for

RRAM crossbar array based computing system design.

We first analyzed the impact of both device level and

circuit level non-ideal factors, including the nonlinear

I-V relationship of RRAM devices, the variation of de-

vice processing and write operation, the interconnects,

and other device parameters. In order to overcome the

impact of these non-ideal factors and achieve a bet-

ter trade-off among performance, energy and reliabi-

lity, we proposed a technological exploration flow for

device parameter configuration of RRAM crossbar ar-

ray based computation, including the technology node

and load resistance configuration, and the algorithm of

matrix mapping to crossbar array with considerations

on the trade-off between power and performance. We

used the MNIST dataset and a linear SVM classifier

as a case study to test the performance of the pro-

posed framework. The simulation results show 10.98%

improvement of recognition accuracy and 26.4% power

reduction compared with previous work[10], and can fur-

ther receive an 84.4% power saving at the cost of little

accuracy reduction. In addition, although this work

focuses on the load resistance based read scheme for

RRAM crossbar, other kinds of read peripheral circuits

such as sense amplifiers and analog to digital conver-

ters can also be regarded as equivalent resistances or

impedances connected to the crossbar array. Therefore,

the proposed design flow can be extended to other read

schemes with little modification, and the experimental

results are still valuable for these designs.

In the future, we will further explore how to

compensate the impact of IR-drop problem in map-

ping, which can improve the computation accuracy

of RRAM-based matrix-vector multiplication especially

when using large crossbars, we will also develop a

friendly design automation tool.
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