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Abstract—Memristor-based computation provides a promising
solution to boost the power efficiency of the neuromorphic com-
puting system. However, a behavior-level memristor-based neuro-
morphic computing simulator, which can model the performance
and realize an early stage design space exploration, is still
missing. In this paper, we propose a simulation platform for
the memristor-based neuromorphic system, called MNSIM. A
hierarchical structure for memristor-based neuromorphic com-
puting accelerator is proposed to provides flexible interfaces for
customization. A detailed reference design is provided for large-
scale applications. A behavior-level computing accuracy model
is incorporated to evaluate the computing error rate affected
by interconnect lines and nonideal device factors. Experimental
results show that MNSIM achieves over 7000 times speed-up than
SPICE simulation. MNSIM can optimize the design and estimate
the tradeoff relationships among different performance metrics
for users.

Index Terms—Design optimization, energy efficiency, memris-
tors, neural network, numerical simulation.

I. INTRODUCTION

THE NEUROMORPHIC algorithms have shown great
performance in many fields including vision, speech, and

other intelligent processing tasks [1]. The neuromorphic algo-
rithms cost much more memory and computing resources than
traditional methods, which necessitates the energy-efficient
design in modern computing systems [2]. However, it has
become more and more difficult to achieve substantial power
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efficiency gains through the scaling down of traditional CMOS
technique [3], and the “memory wall” bottleneck affects the
efficiency of von Neumann architecture [4].

The innovation of memristor and memristor-based com-
puting system provides a promising solution to boost the
power efficiency of neuromorphic computation. The inherent
analog resistant characteristic provides an alternative to the
von Neumann architecture by processing the computation in
memory [5]. Therefore, several memristor-crossbar-based neu-
romorphic systems and accelerators have been developed to
improve energy efficiency significantly [6], [7].

A memristor-based neuromorphic accelerator performs neu-
romorphic computation in high energy efficiency, which is the
most important part of a memristor-based neuromorphic com-
puting system. For large-scale applications on memristor, a
large number of different factors can affect the performance.
Therefore, accurate early stage simulation is needed to esti-
mate and optimize the performance of the design. However,
none of the existing system simulation platforms completely
supports the simulation of a memristor-based neuromorphic
computing system and accelerator. Traditional architectural
simulators like GEM5 [8] cannot support memristor devices
and memristor-based computing structures. NVSim [9] and
NVMain [10] are memory-oriented simulators where the
peripheral circuit structure of NVSim/NVMain is fixed for
memory simulation. Therefore, circuit-level simulators such
as SPICE and NVMspice [11] are used to simulate the
memristor-based accelerator. However, the simulation time
increases dramatically when the scale of the network gets
larger. As a result, a fast simulation platform specific to
memristor-based neuromorphic accelerator with an accurate
behavior-level model is highly demanded.

Several challenges need to be addressed when developing
a behavior-level simulation platform for the memristor-based
neuromorphic accelerator. First, since the detailed circuit
designs of memristor-based neuromorphic accelerators vary a
lot, a simulation platform needs to integrate a flexible architec-
ture for the accelerator to support the various designs. Second,
computing accuracy is the main metric that needs to be esti-
mated in a memristor-based neuromorphic accelerator, but a
behavior-level estimation model is still missing.

This paper proposes simulation platform for the memristor-
based neuromorphic system (MNSIM), a simulation platform
that simulates the memristor-based neuromorphic accelerator
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from the behavior level. The main contributions of MNSIM
are as follows.

1) A hierarchical structure for memristor-based neuro-
morphic computing accelerator is proposed to support
various algorithms with the same structure abstraction,
and all the design parameters are classified into the three
levels in the proposed hierarchical structure.

2) MNSIM provides both a reference design for large-
scale neuromorphic accelerator and flexible interfaces
for users from multiple levels to customize their designs.

3) A behavior-level computing accuracy model is proposed
to estimate the average and worst cases with high speed,
which accelerates the estimation more than 7000×
compared with SPICE.

4) MNSIM can explore the design space of memristor-
based neuromorphic computing accelerators for design
optimization. The simulation results can guide the design
of memristor-based neuromorphic computing systems at
an early design stage.

II. PRELIMINARIES

A. Memristor and Memristor-Based Computing Structure

A memristor cell is a passive two-port element with variable
resistance states. There are multiple kinds of devices which can
be used as memristor cells, such as resistive random access
memory (RRAM), phase change memory, etc. Multiple mem-
ristor cells can be used to build the crossbar structure. If we
store each value of a “matrix” by the conductance of the mem-
ristor cell (gk,j) and input the “vector” signals through variable
voltages, the memristor crossbar can perform analog matrix-
vector multiplication, as shown in Fig. 1(e). The relationship
between the input voltage vector and output voltage vector can
be expressed as follows [12]:

⎡
⎢⎣

vout,1
...

vout,M

⎤
⎥⎦ =

⎡
⎢⎣

c1,1 · · · c1,N
...

. . .
...

cM,1 · · · cM,N

⎤
⎥⎦

⎡
⎢⎣

vin,1
...

vin,N

⎤
⎥⎦ (1)

where vin,j denotes the jth element of input voltage vector
(j = 1, 2, . . . , N), vout,k denotes the kth element of output
voltage vector (k = 1, 2, . . . , N), and ck,j is the weight matrix
for multiplication. The matrix data can be represented by the
conductances of the memristor cells and the conductance of
the load resistor (gs) as [12]

ck,j = gk,j

gs + ∑N
l=1 gk,l

. (2)

Since the memristor cells also serve as memory devices in
this structure, the computation and memory are merged during
operation. Therefore, the matrix-vector multiplications can be
efficiently processed by memristor crossbars [6].

B. Memristor-Based Neuromorphic Computing

Since matrix-vector multiplication operations dominate
the majority of the computation work of neuromorphic
algorithms [13], [14], researchers have proposed vari-
ous memristor-based neuromorphic computing architectures.
However, not all algorithms can be efficiently implemented

by memristor-based computing structure. In this paper,
three classes of neuromorphic algorithm implementations are
explored based on memristor computing platforms.

1) Memristor-Based DNNs: In a layer of DNN, each output
neuron is connected to all the input neurons of this layer, which
is called a fully connected layer. The function to calculate
output signals in a fully connected layer with N input neurons
and M output neurons is

outputk = f
(∑

inputj ∗ weightk,j + biask

)
(3)

where outputk denotes the calculated output signal of the kth
output neuron (k = 1, 2, . . . , M), inputj denotes the input sig-
nal from the jth input neuron (j = 1, 2, . . . , N), weightk,j
denotes the weight connecting the jth input neuron and the
kth output neuron, and biask is the bias signal of the kth out-
put neuron. f is a nonlinear function to introduce nonlinear
classification ability into the algorithm, such as sigmoid func-
tion and the rectified linear unit (ReLU) function. Equation (3)
can be rewritten into a matrix version

OutputM×1 = f
(
WeightM×NInputN×1 + BiasM×1

)
. (4)

As (4) shows, the main function of fully connected neuro-
morphic algorithms is based on matrix-vector multiplication,
namely WeightM×N × InputN×1. The matrix-vector multipli-
cation function is usually called synapse function in neu-
romorphic algorithms, and the nonlinear function is called
neuron function. The synapse function can be efficiently
implemented by memristor crossbars, and the neuron function
is implemented by peripheral modules [15]. When processing
a well-trained neuromorphic network, the Input vector changes
in different samples (e.g., different pictures for image classi-
fication), but the Weight matrix remains the same. Therefore,
once mapping a well-trained network onto memristor-based
computing circuit, the resistant states of memristor cells
will not need to be changed during neuromorphic comput-
ing operations. This characteristic avoids the high-writing-cost
problem [6] and the endurance limitation [16] of memristor
devices. As a result, memristor crossbar provides a promis-
ing solution to boost the energy efficiency of fully connected
neuromorphic networks [17].

Researchers have proposed several kinds of memristor-
based DNN accelerators. Li et al. [12] proposed a memristor-
based approximate computing system, and Hu et al. [17] used
the memristor-based computing structure to accomplish the
recall function in an auto-associative neural network. When
the network scale increases, multiple memristor crossbars need
to work together for a large weight matrix. Hu et al. [18] and
Liu et al. [19] have provided the peripheral circuits to merge
the results of multiple memristor crossbars.

2) Memristor-Based SNNs: SNN is a brain-inspired algo-
rithm where the information is encoded by the precise
timing of spikes [20]. Since the synapse function is also
matrix-vector multiplication, researchers have used memris-
tor crossbars to implement the synapse function of SNN [21].
Some researchers also use the dynamic synaptic properties of
memristor devices to perform the learning and selecting func-
tions [22]. This inspiring work has shown the potential of
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Fig. 1. (a) Architecture of entire memristor-based neuromorphic computing system. MNSIM focuses on the simulation for the memristor-based neuromorphic
accelerator. (b) Hierarchical structure of memristor-based neuromorphic accelerator. (c) Computation bank that consists of synapse sub-banks and neron
sub-banks. (d) Computation unit, where the circuits in dotted blocks are optional to implement signed weight. (e) Memristor crossbar. (f) Line buffer structure.

further improving the efficiency by memristor devices, but a
proper model for the dynamic synaptic property is still miss-
ing. Therefore, in the following sections of this paper, we only
focus on the SNNs that use each memristor cell to store a
fixed weight. Since the function of an SNN layer can also
be described by (4), we regard both DNN and SNN as fully
connected networks in the following sections.

3) Memristor-Based CNNs: CNN has shown great
performance in computer vision field [14]. In CNN, convo-
lutional (Conv) layers are cascaded before fully connected
layers to extract the local features. The primary function of
a Conv layer is the convolution (Conv) kernel, which can
also be regarded as vector-vector multiplication [23]. Since
multiple kernels in the same layer share the input vectors,
multiple kernels can be regarded as matrix-vector multipli-
cation. Therefore, all layers of CNN can be implemented
in memristor crossbars with high energy efficiency [7], [24].
Memristor-based convolution kernels has already been vali-
dated by memristor chips [25].

Since CNNs are not fully connected, the detailed circuit
designs of memristor-based CNN accelerators are different
from the others. However, we find that the overall architec-
tures are similar if we abstract the circuits into higher-level
modules, as described in Section III.

C. Difference Between Memristor-Based Nonvolatile
Memory and Memristor-Based Computing Structure

Researchers have fabricated nonvolatile memories using
memristor [26], but these circuits cannot support memristor-
based computation. First, in memory operations, i.e., the
READ and WRITE operations, only one cell is selected in
each crossbar [6]. However, when processing matrix-vector
multiplication, all the memristor cells in a crossbar need to be
selected to entirely utilize the parallelism of crossbar structure,

as shown in Fig. 1(f). Therefore, the cell selection scheme and
the corresponding control circuits need to be adjusted. Second,
peripheral computing modules are necessary to support the
entire function of neuromorphic computation.

D. Related Work About Simulation Platform

GEM5 [8] is widely used in system designs based on
CMOS technology, but it does not support the memristor
device and memristor-based computing structure. NVSim [9]
and NVMain [10] are simulators for nonvolatile memory using
memristor cells or CMOS technologies. However, the periph-
eral circuit structure is fixed for memory design, so NVSim
and NVMain do not support the simulation of computing
structure. NVMspice [11] simulates the state of memristor
from circuit level, which requires that the memristor cell’s I–V
characteristic must be linear or quadratic. Since practical mem-
ristor cells’ characteristics are far from these ideal curves [17],
NVMspice cannot be used to simulate the performance of a
real system. Therefore, researchers currently use the circuit-
level simulator like SPICE to optimize the circuit design, but
the optimization of a large-scale application will take months
to simulate a large number of designs iteratively. Therefore,
a high-speed simulation platform that supports the simula-
tion of a memristor-based neuromorphic accelerator is highly
demanded.

III. HIERARCHICAL STRUCTURE OF MEMRISTOR-BASED

NEUROMORPHIC COMPUTING ACCELERATOR

The memristor-based neuromorphic computing accelerator
can be regarded as a piece of equipment that is connected to
CPU through the bus, as shown in Fig. 1(a). Since the simula-
tion of CPU, memory, and other I/O devices are well settled by
existing architectural simulators like GEM5 [8], MNSIM only
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TABLE I
CONFIGURATION LIST OF MNSIM

simulates the performance of memristor-based neuromorphic
accelerator.

The design of a memristor-based neuromorphic accelera-
tor involving both the architecture-level optimization (e.g.,
the connection of crossbars) and the circuit-level optimization
(e.g., choosing suitable read circuits). A behavior-level simula-
tion platform needs to support the modifications of memristor-
based neuromorphic accelerator from different levels, without
changing the fundamental simulation flow or rewriting the
source code. Therefore, it is necessary to abstract the design
differences into quantifiable parameters and decouple them
into multiple design levels. To solve this problem, we pro-
pose a hierarchical structure abstraction for memristor-based
neuromorphic accelerators.

The neuromorphic algorithm consists of multiple cascaded
network layers with similar functions. Therefore, the neuro-
morphic accelerator can be divided into multiple cascaded
modules, where each module represents the operation of a
network layer. This module is named Computation Bank in
MNSIM.

The scale of a network layer can be larger than the maxi-
mum size of a memristor crossbar [7]. Therefore, to process
large-scale neuromorphic application, the computation bank
must contain multiple memristor crossbars. The crossbars are
connected with some necessary peripheral circuits, which con-
stitutes as multiple individual units. MNSIM integrates these
individual units as Computation Units.

As a result, most of the circuit designs of memristor-
based neuromorphic accelerators can be represented by the
hierarchical structure containing three levels: 1) accelerator
level; 2) computation bank level; and 3) computation unit
level. The hierarchical structure is shown in Fig. 1. Based
on this abstraction, MNSIM provides flexible customization
interfaces, and the architecture remains unchanged. As shown
in Table I, users can configure the design from different
levels for different neuromorphic accelerators. In addition,
MNSIM assumes that all the weight matrices can be entirely
stored in multiple memristor crossbars. This is because that
high integration is an advantage of memristor-based structure,
and storing all weights without repeatedly writing can better

improve the energy efficiency of memristor-based computing
structure [7].

A detailed reference design of each level is provided
below, and users can modify the detailed structure through
customization interfaces, as described in Section III-E.

A. Level-1: Accelerator

As shown in Fig. 1(b), the accelerator contains not only
the cascaded computation banks but also some modules that
support the functions for the whole accelerator like the acceler-
ator interfaces. The accelerator-level design mainly focuses on
determining the number of computation banks and the number
of ports for the interfaces. As Table I shows, the accelerator
level contains two main parameters: 1) Interface_Number and
2) Network_Depth.

The Network_Depth, namely the number of neuromorphic
layers in the network, is determined by the target application.
The Network_Depth determines the number of computation
banks contained in the accelerator. In CNN, the definition of
a “layer” varies in different work [13], [27], including ReLU
layers, pooling layers, buffer layers, etc. However, as men-
tioned in Section II-B, only the Conv kernels can be efficiently
computed by memristor crossbars. Therefore, MNSIM only
regards a layer that contains Conv kernels or fully connected
weights as a neuromorphic layer to be processed in one com-
putation bank. In this way, all the subsequent functions after
Conv kernels in a CNN is regarded as the peripheral func-
tions in a computation bank. For example, the widely used
CaffeNet [27] is regarded as a 7-layer CNN and contains seven
computation banks.

In memristor-based computing, all the inputs of a cross-
bar need to be well prepared before the computation cycle.
Since the size of input samples and output computation results
can be larger than the number of wires in the data bus, we
need interface modules to buffer the input and output data of
accelerator. The input module sends the data to the first com-
putation bank after a sample has been completely received
from the bus. In this way, the input module uses limited
Interface_Number [1] input lines to accomplish the transmis-
sion of all the input data in a sample and keeps the fully
parallel function of memristor crossbars. Similarly, an output
module is cascaded after the final computation bank to send
the output results in multiple cycles.

B. Level-2: Computation Bank

A computation bank processes the computation of one neu-
romorphic layer. Each computation bank consists of multiple
Computation Units, an Adder Tree merging the results for a
large neuromorphic layer, a Peripheral Module for subsequent
functions like nonlinear function, the Pooling Buffer to pro-
cess the spatial pooling in CNN, and the final Output Buffer.
Computation bank is further divided into multiple synapse
sub-banks and multiple neuron sub-banks according to the
corresponding synapse function and neuron function in the
neuromorphic algorithms, where multiple computation units
using the same inputs belong to a synapse sub-bank. Since the
digital signals have better tolerance for noise when merging
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the outputs of multiple units, MNSIM uses digital input/output
signals for computation units and the other modules as a refer-
ence design. If users want to use analog communication, they
can move the read circuits from units to peripheral modules
to process the simulation.

1) Computation Unit: When using multiple crossbars to
implement the matrix-vector multiplication, a large matrix is
divided into multiple blocks. The results of multiple small
matrix-vector multiplications of a row need to be merged by
an addition operation as

�Vout,k =
N∑

j=1

Wk,j �Vin,j (5)

where �Vin,k is the subvector of input data in the kth row [e.g.,
�Vin,1 = (vin,1, vin,2, . . . , vin,s) if the Crossbar_Size is s], �Vout,j
is the subvector of output data in the jth row, and Wk,j is the
submatrix in the kth row and jth column.

In the proposed hierarchical structure, each unit processes
the matrix-vector multiplication of a submatrix and a sub-
vector. The detailed structure of a computing unit will be
discussed in Section III-C.

2) Adder Tree: As (5) shows, results from multiple units
are added together. We use an adder tree structure as shown
in Fig. 1(c), where the results of two neighboring units are
added first, and then merged by a binary tree structure.

Since the number of resistance levels in one memristor cell
cannot support a high-precision weight, researchers store the
lower bits and higher bits of a weight matrix into multiple
memristor crossbars and merged the output results. The merg-
ing function can also be implemented by the adder tree, but
the shifters need to be added [6].

3) Pooling Module and Pooling Buffer: The spatial pooling
function in CNN chooses the maximum value of the neigh-
boring k × k results in a matrix. Therefore, a pooling module
is cascaded after the adder tree in memristor-based CNNs.

However, only a maximum function is not enough for
memristor-based design. Since the pooling inputs are obtained
in multiple cycles, the temporary results before pooling need
to be buffered. Since the living period of the buffered data
is much smaller than the total data amount, researchers have
proposed a pooling line-buffer inspired by the convolutional
line-buffer used in an field-programmable gate array (FPGA)-
based CNN accelerator [28], as Fig. 1(f) shows. In each
iteration, a new result coming from the adder tree is buffered
into the head, and all the other data shift for one register. As
a result, the data in the red block are just the inputs for the
next pooling function.

4) Nonlinear Neuron Module: Equation (3) has shown that
a nonlinear neuron function at the end of a neuromorphic layer
is needed to provide nonlinear classification ability. The non-
linear neuron function cannot be separately operated before
the linear adding operation in (5). Therefore, the neuron func-
tions can only be implemented outside the units, and operate
after the adder tree. Considering that all the existed nonlinear
functions used in CNNs are monotone increasing functions,
the pooling function can be processed before nonlinear neu-
rons to reduce processing times of neurons. MNSIM cascades
the neuron module after the adder tree in fully connected NNs,

or after the pooling module in CNNs. The reference design of
neuron module is the sigmoid function for DNN, the integrate
and fire function for SNN, and the ReLU function for CNN.

5) Output Buffer: In fully connected layers, the output
buffer size is same to the number of neurons Cout. Therefore,
the output buffer consists of Cout registers and each register is
connected to a neuron module through a fixed wire. In the cas-
caded Conv layers of CNN, not all the outputs are required
simultaneously for next Conv layer. Similar to the pooling
buffer, MNSIM integrates a simplified line buffer, as Fig. 1
shows. For the ith Conv layer whose output feature map size
is Wi+1×Hi+1×Ci+1

in the output buffer contains Ci+1
in separate

line buffers. If the size of convolution kernel in the (i + 1)th
layer is wi+1 × hi+1, the length of a single line buffer Li

out is

Lout = Wi+1 ×
(

hi+1 − 1
)

+ wi+1. (6)

Therefore, in the (i+1)th layer, the data in the blocked registers
are used for convolution function, and the processing of Conv
layers are pipelined through the data flowing in line buffers.

C. Level-3: Computation Unit

A computation unit consists of four main modules: 1) mem-
ristor crossbar; 2) address decoder; 3) read circuit; and 4) input
peripheral circuit. The reference structure of computation unit
provided in MNSIM is shown in Fig. 1(d).

1) Memristor Crossbar: It accomplishes the memory and
computation functions of a neuromorphic accelerator. Since
the resistance of memristor devices can only be positive, two
memristor cells are needed to represent one signed weight.
There are two methods: 1) a unit needs to contain two cross-
bars and uses the difference value of the corresponding cells
to reflect one signed weight [17], as shown in Fig. 1(d)
and 2) both positive and negative values are stored in the
same crossbar, and two outputs from different columns are
subtracted. In MNSIM, the polarity of network weights and
the mapping method of the signed weights are configurable.
Therefore, the second memristor crossbar and the subtractors
in the computation unit are optional, and the Crossbar_Size
can be adjusted for design space exploration.

2) Address Decoder: It is the module to select specific
column/row through a transfer gate. In READ and WRITE
operation, two decoders are needed for each crossbar to select
the specific row and column. A computation-oriented crossbar
decoder is designed to select all the input ports of a cross-
bar, which is introduced in Section V-B. The detailed decoder
circuit is determined by Crossbar_Size.

3) Input Peripheral Circuit: It contains design automation
conferences (DACs) and transfer gates as switches to generate
the input signals. In computing phase, all the inputs should
be provided in the same cycle to fully utilize the parallelism
of memristor-crossbar-based computation. Since the crossbar
size and the matrix size may not match, the input throughput
of a crossbar is the smaller value between the number of rows
in the weight matrix and the number of rows in memristor
crossbar.

4) Read Circuits: It are ADCs or multilevel sensing ampli-
fiers (SAs) and the extra subtractors to merge the signals come
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from two crossbars. To reduce area and power consumption,
some researchers propose that each crossbar only computes
p columns in one cycle, and sequentially compute multiple
cycles to obtain the entire results of a crossbar. MNSIM uses
the parallelism degree p as a variable for optimization. A larger
p leads to higher output throughput but higher area overhead.
A control module is used to route the crossbar output to sens-
ing circuit through MUXs, which can be implemented by a
digital counter.

D. Instruction Set and Controller

The instruction sets vary a lot in different memristor-
based neuromorphic computing accelerators. For example, a
general-deep-learning accelerator can support a fine-grained
instruction set that is similar to Cambricon [29], but an
application-specific accelerator may only support three basic
instructions: 1) WRITE; 2) READ; and 3) COMPUTE. As
a simulator platform, MNSIM first supports the design using
three basic instructions. If the designer uses other customized
instructions to support improved functions, they can design
their own instruction sets and integrate corresponding control
modules. This customization will not change the simulation
flow of MNSIM.

E. Customized Design

MNSIM provides a reference design of each circuit mod-
ule based on the above hierarchical structure. If other models
and topologies of memristor-based computing need to be
simulated, users can customize the modules and connection
structures from different levels.

1) Mapping Circuits Onto the Reference Design of MNSIM:
The reference design of MNSIM directly supports the simula-
tion of a large number of existing memristor-based neuromor-
phic accelerators [12], [17], [23], [25]. When implementing
small scale applications, we only need one computation unit
in each computation bank, as shown in Fig. 2(a). For large
networks, each computation bank contains multiple computing
units, as shown in Fig. 2(b).

2) Customizing Structure Connection: Users can cus-
tomize the connection of modules on multiple levels. For a
computation-bank-level example, if the users want to build
an accelerator which only consists of multiple reconfigurable
computation units [6], they can distribute the peripheral mod-
ules like the adders into computation units. For a computation-
unit-level example, the structure proposed in [24] and [30]
eliminates the DACs and ADCs (or multilevel SAs) around
each crossbar. The users can remove the corresponding mod-
ules of computation unit to simulate this structure.

3) Customizing Module: Users can change the performance
model of a circuit module in the reference design. If users
want to introduce new modules, like mapping a new kind
of neuromorphic algorithms onto the memristor-based struc-
ture, they only need to integrate the performance models into
MNSIM. For example, Fig. 2(c) shows the design in [19]. The
memristor-based accelerators only accomplish the computa-
tion of synapse function, and other functions are processed in
a CPU. Therefore, the accelerator part only contains synapse

(a)

(b)

(c)

Fig. 2. Examples of the neuromorphic circuit structures that MNSIM sup-
ports. (a) Small network from [17]. (b) Large network on Memristor from [28].
(c) Large network with CPU from [19].

sub-bank where the adder tree is replaced by an analog router,
and the buffer design is modified. To simulate this paper,
the user needs to provide the power, latency, area, and accu-
racy loss models of the new modules and adds them to the
simulation function of synapse sub-bank.

4) Cooperate With Other Simulator: NVSim [9] is a pow-
erful simulator for memristor-based nonvolatile memory. We
provide an interface for each computation-oriented module
(i.e., sigmoid circuit) to be compatible with NVSim. Users
can easily introduce some NVSim results into MNSIM; or
use MNSIM results in NVSim by adding the circuit models.

IV. SIMULATION PLATFORM

A. Software Flow and Inputs of MNSIM

Based on the hierarchical structure described in Section III,
users provide a configuration file which contains the mod-
ule choices and the design parameters. The details about
configuration file are shown in Table I. MNSIM generates
modules of accelerator level, computation bank level, and

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 04,2020 at 18:06:55 UTC from IEEE Xplore.  Restrictions apply. 



XIA et al.: MNSIM 1015

Fig. 3. Software flow of MNSIM.

computation unit level using the configuration file. As shown
in Fig. 3, MNSIM first generates a memristor-based neuro-
morphic accelerator module which contains the I/O interface
and multiple cascaded computation banks. After that, MNSIM
generates the computation bank modules and computation
unit modules recursively. The performance of each module is
simulated using the models described in Section V and the
technique configurations. The simulation works from com-
putation unit level back to accelerator level, as shown in
Fig. 3.

As a behavior-level simulation platform, MNSIM adds the
performance of the lower-level modules together to obtain the
performance of a higher-level module. For latency estimation,
MNSIM uses the worst case to evaluate execution time for
three reasons. First, memristor-based neuromorphic computing
works in a cascaded way, as Fig. 1(c) shows. Therefore, the
critical path is determined by the structure connection instead
of the input signals. Second, most memristor-based multilayer
accelerators use pipelined design [28], so the execution time is
determined by the worst-case delay among layers. Third, neu-
romorphic computing is used for recognition of inputs that are
not predictable; hence, users mainly concern the recognition
speed in the worst case.

MNSIM estimates the area, power, latency, and computing
accuracy based on the CMOS technology data and estimation
models discussed in the following sections. If users do not
determine all configurations, MNSIM will give the optimal
design for each performance with design details. If users still
want to perform a circuit-level simulation with specific weight
matrices and input vectors, MNSIM can generate the netlist
file for circuit-level simulators like SPICE.

MNSIM provides friendly interfaces for customization. If
users want to change the connection relationship of modules,
they only need to modify the module generation function of
MNSIM, as the blue dotted line shows in Fig. 3. If users want
to add new circuit modules, they can add the performance
model into the simulation functions as the red dotted line
shows in Fig. 3.

B. Limitations of MNSIM

First, MNSIM is specific for memristor-based neuromorphic
computing where the memristor cells are used as fixed weights.

(a) (b)

Fig. 4. (a) Memory-oriented decoder. (b) Computation-oriented decoder to
select all cells. An NOR gate is added.

Some researchers focus on the dynamic properties of the
memristor and use memristors as oscillators or other dynamic
modules [31], which cannot be supported by MNSIM.

Second, as a behavior-level simulation platform, MNSIM
obtains simulation speed-up at the cost of simulation accu-
racy, which provides an early stage simulation and supports
the user to compare different designs. However, after choosing
or reducing the search region of some key design parameters,
designers are still suggested to perform a circuit-level sim-
ulation using the detailed model and technology files before
fabrication.

V. AREA, POWER, AND LATENCY MODELS

A. Memristor Crossbar

The crossbar structure for computation is the same as the
structure in a memristor-based memory structure, MNSIM
uses the existing area model of memristor-based memory to
estimate the crossbar area. The area estimation models of
MOS-accessed cell and cross-point cell are [32]

AREAMOS-accessed = 3(W/L + 1)F2 (7)

AREAcross-point = 4F2 (8)

where W/L is the technology parameter of the transistor in
each cell, and F is the size of memristor technology node.

Since all cells are used in computing, the power consump-
tion is larger than that of a memory-oriented circuit. MNSIM
uses the harmonic mean of minimum and maximum resis-
tance of memristor to replace all cells’ resistance values as
the average case estimation.

B. Decoder

The traditional decoder used in memory is an address selec-
tor controlling the transfer gate between the input signal and
crossbar, as shown in Fig. 4(a). MNSIM modifies this decoder
into a computation-oriented decoder shown in Fig. 4(b). A
NOR gate is placed between the address decoder and the trans-
fer gate, and a control signal is connected to the NOR gate.
When processing computation, the control signal is at high
voltage and turns on all transfer gates through the NOR gate.

C. ADC

Researchers have shown that ADC circuits take about half of
the area and energy consumptions in memristor-based DNNs
and CNNs [24]. There are two main parameters when choos-
ing ADC: 1) the precision and 2) the frequency. The precision
of ADC can be calculated by the crossbar input data precision,
weight precision, and the crossbar size [7], and MNSIM also
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uses this method to determine the precision of ADC. Since
neuromorphic computing is a kind of approximate comput-
ing, the precision of most CNNs can be quantized into 8-bit
fixed-point value [14], which means the precision of ADC
can also be 8-bit. Therefore, the precision of ADC can be
directly configured according to the algorithm requirements.
For frequency, there is a tradeoff between speed and hard-
ware overhead of ADC. A widely used assumption is that
the frequency of ADC should match the speed of memristor-
based computing structure. The latency of memristor-based
nonvolatile memory has been reduced to 10 ∼ 100 ns [7], [33],
which motivates us to choose an ADC whose frequency is
higher a 10 MHz.

MNSIM uses a variable-level SA [34] with 50 MHz
frequency as the reference ADC design [6]. There are a lot
of kinds of ADCs with different performances [35], and the
performance models of some popular ADC designs have been
integrated into MNSIM. Users can also integrate the area,
power, and latency performance model of a customized ADC
into MNSIM.

D. Other Modules

MNSIM provides a reference transistor-level design and
uses the technology parameters from CACTI [36], NVSim [9],
predictive technology model [37], [38], and other technol-
ogy documents to estimate the parameters of transistor-based
modules [12].

For a customized module, the user can provide a detailed
transistor-level design, or directly provide the behavior-level
dynamic power, static power, latency, and area performance
of the module.

VI. BEHAVIOR-LEVEL COMPUTING

ACCURACY MODEL

Computing accuracy is an important characteristic for a
computing accelerator. For memristor-based fixed-point com-
putation, the computing error can be divided into two parts:
1) the error generated by data quantization and 2) the error
caused by memristor-based analog computation. To fairly eval-
uate the performance of memristor-based hardware structure,
MNSIM uses the second part of error as the definition of com-
putation error, and therefore, the ideal computation result is
based on the fixed-point algorithm.

Traditional circuit-level simulators solve a large number of
nonlinear Kirchhoff equations to obtain the accuracy loss. For
an M × N crossbar, more than [MN + M(N − 1)] voltage vari-
ables (the voltages of the input node and output node of each
cell) and 3MN currents need to be solved. Moreover, since
memristors are devices with nonlinear V–I characteristics [39],
the equations are not linear. Consequently, simulation speed of
circuit-level simulator is limited by the high cost of solving
nonlinear equations.

We propose three approximation steps to obtain a behavior-
level computing accuracy model: 1) decoupling the influence
of nonlinear V–I characteristic to simplify equations into linear
format; 2) ignoring the capacitance and inductance of intercon-
nect lines to simplify the crossbar circuits into multiple series

resistor sets; and 3) using the average case and the worst case
to reduce the model complexity.

A. Decoupling the Influence of Nonlinear V–I
Characteristics

When analyzing analog circuits, we first find the DC oper-
ating point of each device according to some approximations,
and then add the influence of small-signal parameters onto the
operating point. Inspired by this method, we first regard each
memristor cell as a variable resistor with a linear V–I character-
istic in each resistance state, where the resistance of each cell
Ridl is determined according to (2). In this way, the equations
are transformed into linear equations, and the ideal operating
voltages are obtained. After that, the influence of nonlinear
V–I characteristic is added back to calculate the actual resis-
tance Ract and the current of each memristor cell at the given
operating voltage.

B. Ignoring the Capacitance and Inductance of
Interconnect Lines

In a circuit-level simulator, the interconnect line model con-
tains a resistor r, a cascaded inductor, and a bridged capacitor.
Since the inductances and capacitances of interconnect lines
have little influence on memristor-based computing [39], we
simplify the interconnect line into a resistance-only device. In
this way, the crossbar circuit is modified into a resistor network
containing MN memristor cells (Ract), 2MN interconnect lines
(r), and N sensing resistors (Rs).

C. Using the Average and Worst Cases for Estimation

When evaluating and optimizing a design, we need to know
the overall accuracy loss instead of the results of a specific
weight matrix or input sample. Therefore, MNSIM provides
a coarse-grained accuracy model that analyzes the accuracy
loss using the average and worse cases. For a crossbar with
M rows and N columns, when the input voltages equal, the
output voltage of a column is

Vo = Vi × Rs

Rparallel + Rs
(9)

where Rparallel is the parallel resistance of the whole column,
and Rs is the equivalent sensing resistance. If we take the resis-
tance of interconnect line between neighboring cells r into
account, the Rparallel is larger than the parallel resistance of
memristor cells, as shown in (10). Since r is much less than
the resistance of memristor, the difference between denomi-
nators can be ignored. In the worst case, all memristors are
at the minimum resistance, and the worst column is the far-
thest column from input signals. Therefore, the Rparallel can be
approximately calculated by

1

Rparallel
≈

M∑
m=1

1

Rm,n + mr + nr
≈ M

Rmin + (M + N)r
(10)

where Rm,n is the resistance of memristor cell in the mth row
and the nth column, and Rmin is the minimum resistance of
memristor device. Take the nonlinear V–I characteristics back
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Fig. 5. Error rate fit curves of output voltages with different crossbar sizes
and interconnect technology nodes. The scattered points are simulated by
SPICE, and the lines reflect the proposed estimation model.

into account, the practical resistance of memristor cell Ract
differs from the ideal value Ridl. By substituting (10) into (9),
we can estimate the actual output voltage. After simplification,
the error of output voltage is

Vo,idl − Vo,act = Vi × [(M + N)r + Ract − Ridl]RsM

[Ract + (M + N)r + RsM](Ridl + RsM)
.

(11)

The error rate is denoted by (Vo,idl − Vo,act)/Vo,idl, which can
be calculated using (11). We use M, N, and r as variables to
simulate the error of output voltages on SPICE, and fit the
relationship according to (11) to obtain the accuracy module,
as shown in Fig. 5. The root mean squared error of this fitting
curve is less than 0.01.

We can transform the above voltage error rate into the digital
data deviation. The results of matrix-vector multiplication are
linearly quantized into k levels by the read circuits. Therefore,
given the quantization interval Vinterval, the k − 1 quantiza-
tion boundaries are {0.5Vinterval, . . . , (k − 1 − 0.5)Vinterval}.
According to the nonideal factor analysis, the input data of
these convert circuits contains a maximum deviation rate of
ε, which causes a read deviation when converting an analog
voltage into digital field. MNSIM uses both the worst-case
deviation and the average deviation to evaluate the accuracy.
In the worst case, the ideal computing result signal is around
the largest quantization boundary (k−1−0.5)Vinterval and needs
to be recognized as the maximum value k−1. The actual com-
puting result in the worst case is (k−1−0.5)Vinterval ×(1−ε),
so the maximum deviation is [(k − 1 − 0.5)ε + 0.5]Vinterval.
The maximum digital deviation can be calculated by

MaxDigitalDeviation = �(k − 1.5)ε + 0.5�. (12)

For example, when k equals 64 and ε equals 10%, the
MaxDigitalDeviation equals 6, which means that the max-
imum value 63 can be wrongly read as 57. Therefore, the
maximum error rate is

MaxErrorRate = �(k − 1.5)ε + 0.5�
k − 1

. (13)

For average case, the digital deviation of a specific quanti-
zation level i can be represented by �iε + 0.5�, where we use

i instead of i − 0.5 or i + 0.5 to reflect the average situation.
Therefore, the average deviation is

AvgDigitalDeviation =
∑k−1

i=0 �iε + 0.5�
k

. (14)

When simulating the application with multiple network
layers, the input signal from the previous layer also has a fluc-
tuation. Suppose that the digital error rate of the previous layer
is δd1 and the computing error rate of the current layer’s cross-
bar is εc2, the practical analog output voltage of the current
layer is limited by

(1 − δd1)(1 − εc2)Vidl ≤ Vact ≤ (1 + δd1)(1 + εc2)Vidl (15)

which can be substituted into (12)–(14) to further analyze the
read error rate of the current layer. MNSIM uses this prop-
agation model to evaluate the final accuracy of the whole
accelerator layer by layer.

D. Device Variation

The device variation of a memristor cell has been modeled
by previous research results [40]–[42]. A common used model
is introducing a random factor into Ract. Given that σ is the
maximum percentage of the random resistance deviation rang-
ing from 0% to 30% in various devices [41], the worst case of
practical resistance of memristor cell is (1±σ)Ract. The devia-
tion is an additional noise on resistance, which can be directly
introduced into (9). After formula simplification similar to the
variation-free case described in Section VI-C, we can derive
the estimation model with resistance deviation σ , as

�V = Vi[(M + N)r + (1 ± σ)Ract − Ridl]RsM

[(1 ± σ)Ract + (M + N)r + RsM](Ridl + RsM)
(16)

where �V = Vo,idl − Vo,act. The verification result of the
variation-considered model is similar to that shown in Fig. 5,
because the method to introduce noise in SPICE is the same as
that in MNSIM. The reference value of σ in MNSIM is set to
0 to provide the accuracy loss without noise, but the value can
be modified by changing the Memristor_Model configuration
to simulate the performance with variation.

VII. EXPERIMENTAL RESULTS

A. Validation

The existed demonstrations of memristor-based comput-
ing [43], [44] are not suitable for validating the simulation
models because: 1) the detailed power and latency are not
published and 2) these chips only contain the computational
memristor crossbars, and the peripheral functions are pro-
cessed by off-chip CPUs or FPGAs. Therefore, we use the
simulation results from SPICE to validate the models in
MNSIM. We choose a 3-layer fully connected NN with two
128×128 network layers as the application to validate the
power and latency module. The SPICE results are the aver-
age value of 20 random samples of weight matrices, where
100 random input samples are generated for each network. The
technology node of CMOS is 90 nm. The results are shown
in Table II. All the error rates are smaller than 10% com-
pared with the SPICE results. The simulation error on power
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TABLE II
VALIDATION RESULTS WITH RESPECT TO AN RRAM-CROSSBAR-BASED

TWO LAYER NN. THE TECHNOLOGY NODE OF CMOS IS 90 nm

Fig. 6. Layout of 32×32 1T1R RRAM crossbar with the decoder in 130 nm
technology.

TABLE III
SIMULATION TIME OF SPICE AND MNSIM

consumption is caused by the average-case model of input
voltages and memristor cell resistances in MNSIM, which fur-
ther influences the simulation result on energy consumption.
As for the validation of accuracy loss part, we use an approx-
imate computing application, the JPEG encoding processed in
a 3-layer 64×16×64 neural network [12]. The result shows
the error rate of accuracy model is less than 1%.

Since only the crossbar and the decoder are designed by
MNSIM to support neuromorphic computation, we use the
parameter extracted from the layout to validate the area model
of this part. As shown in Fig. 6, a 32 × 32 1T1R memristor
crossbar with the computation-oriented decoders are designed
in 130 nm CMOS technology. The area of the layout is
3420 um2 (45 um × 76 um), while the estimation result is
2251 um2. The large error rate of area estimation is mainly
caused by the reason that the layout design needs to remain
some extra space. MNSIM introduces the validation result as
a coefficient for area estimation. Users can provide the coef-
ficient of their own technologies to obtain a more accurate
estimation.

B. Simulation Speed-Up

We test the simulation time of single memristor crossbar
with different sizes. As shown in Table III, MNSIM obtains
more than 7000× speed-up compared with SPICE. The speed-
up will further increase when simulating accelerator with
multiple crossbars and a large number of peripheral circuits.

C. Case Study: Large Computation Bank

We use a 2048 × 1024 fully connected layer to evaluate
the optimization of a large neural network layer. The data

precision is set to 4-bit signed weights and 8-bit signals [14],
[24], [28]. This case study is based on 7-bit level memristor
model [45], which supports at most 8-bit signed weights in
two memristor crossbars.

We use the reference design based on 45 nm CMOS. The
crossbar size, computation parallelism degree, and intercon-
nect technology are three variables for design space explo-
ration. The computation parallelism degree means the number
of read circuits for each crossbar. For example, when the
parallelism degree is 4, it means we simultaneously obtain
the results of four columns for each crossbar. In this exper-
iment, the crossbar size doubled increases from 4, 8, to
1024; the computation parallelism degree ranges from 1 to
128; and the interconnect technology (nm) is chosen from
{18,22,28,36,45}. MNSIM uses traversal method for optimiza-
tion taking advantage of the high simulation speed. All the
10 220 designs are simulated within 4 s in this case.

1) Design Space Exploration: We set a constraint that
the computing error rate of memristor crossbar cannot be
larger than 25% in the experiment. The design space explo-
ration results are shown in Table IV. Each column of the
table shows the performance and the design parameters of
an optimal design aimed at a specific optimization target.
Compared with the 2nd and 3rd columns, the 1st column
has less area and power consumption with the same inter-
connect technology and crossbar size. This is because it reads
the computing results one by one, but the latency increases
and the energy of entire computation grows back. From the
4th column, we find that the most accurate computation is
implemented by large interconnect technology and a mid-
dle crossbar size, which matches our previous analysis. Since
changing digital modules does not impact the computing accu-
racy of memristor crossbars, the user can set a secondary
optimization target for accuracy optimization. Fig. 9(a) com-
pares the four optimal design in Table IV. Each pentagon
shows the reciprocal area, energy efficiency, reciprocal power,
speed, and accuracy of an optimal design. The reciprocal area,
energy efficiency, reciprocal power, and speed factors are nor-
malized by the maximum value. The results show that the
values of performance factors vary a lot in different opti-
mization targets, and directly optimizing a single performance
factor usually means that the value of other factors will be
low. Therefore, MNSIM also supports the tradeoff analy-
sis to obtain a compromised result among all performance
factors.

2) Tradeoff Among Area, Power, and Accuracy: Since each
splitting of rows in a weight matrix leads to additional periph-
eral circuits like ADCs, the power and area decrease when
using larger crossbar. However, large crossbar suffers from
the impact of nonideal factors, so there is a tradeoff between
computing accuracy and other performances. We use the 45
nm interconnect technology as an example to analyze the
tradeoff relationship. Table V shows that we can get accu-
racy improvement at the cost of area and power only when the
crossbar size is larger than 64. When the crossbar is too small,
the parallel resistance of a column grows up, which leads to
the resistance deviation by the nonlinear V–I characteristic of
memristor [39].
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TABLE IV
TRADEOFF BETWEEN AREA, POWER, AND ACCURACY

BASED ON DIFFERENT CROSSBAR SIZES

TABLE V
DESIGN SPACE EXPLORATION OF THE LARGE COMPUTATION

BANK CASE (A 2048 × 1024 NETWORK LAYER)

3) Tradeoff Between Latency and Area: There is also a
tradeoff between latency and area. The area and power can
be reduced by sharing the output peripheral circuits but the
latency increases. Fig. 7 shows the area and latency results
when using different computation parallelism degrees and dif-
ferent crossbar sizes, where each line shows the results of
the same crossbar size. We normalize the results by the maxi-
mum value of each crossbar size’s result. When the parallelism
degree goes down, the increasing trend of latency is similar
in different crossbar sizes, but the area reduction trend varies.
This is because the number of computation units is few when
using large crossbar size. Therefore, the area of neurons and
peripheral circuits takes a large proportion of area, which lim-
its the gain of reducing read circuits. The tradeoff between
area and latency is shown in Fig. 8. We can obtain large area
reduction at the cost of little latency, and there is an inflection
point for each crossbar size.

D. Case Study: Deep CNN

We use VGG-16 network [46] on ImageNet [47] as
a CNN case study. The precision values of weights and
intermediate data are set at 8-bit according to current quanti-
zation result [14]. The precision of memristor device is set at
7-bit memristor model [48], and the CMOS technology node
is 45 nm. In this case study, the interconnect line technology,
computation parallelism degree, and the crossbar size are set
as common variables in the entire accelerator level.

We reduce the error rate constraint to 50% and enlarge the
interconnect range up to 90 nm. We set the ranges of other
parameters for optimization at the same ranges as used in
Section VII-C. The whole design space exploration results are
shown in Table VI. The latency is defined as the latency of
each pipeline cycle, which is determined by the latency of
the largest Computation Bank. The optimal parallelism degree
results for an entire CNN is the same as that for a computa-
tion Bank due to the pipeline structure. The optimal crossbar
sizes and interconnect line technique nodes are different when

TABLE VI
DESIGN SPACE EXPLORATION OF THE CNN

CASE (VGG-16 [46] NETWORK)

Fig. 7. Influence of computing parallelism degree on area and latency with
different crossbar sizes. The area and latency results are normalized by the
maximum value of each crossbar size for comparison.

Fig. 8. Tradeoff relationship between area and latency with different
computation parallelism degrees and different crossbar sizes.

considering the accumulation of errors. Fig. 9(b) shows the
four optimal design. Compared with the single neural layer,
the entire network case has a smaller difference in different
optimal designs.

E. Case Study: Simulation for Related Work

Two related designs [6], [7] are simulated using MNSIM to
validate its scalability. The results of two work are not com-
parable because the scale and the detailed structures are much
different.

1) PRIME: For PRIME, all the modules in the FF subar-
ray have been modeled in MNSIM, but the connection of the
modules is not directly supported by the reference design. We
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(a) (b)

Fig. 9. Performances of the optimal designs for (a) large computation bank
and (b) deep CNN.

TABLE VII
SIMULATION OF PRIME [6] AND ISAAC [7]. THE RESULTS OF THE TWO

WORK ARE NOT COMPARABLE BECAUSE THE NEURAL NETWORK

SCALES USED IN THE TWO CASES ARE MUCH DIFFERENT

customized the connections by moving the adders, neurons,
pooling buffers, and pooling functions into the computation
units to simulate the reconfigurable units in PRIME. We use
the same simulation configurations as the experiments in the
PRIME [6]. The device is RRAM, and the crossbar size is 256.
The input and output data are 6-bit fixed point, and the preci-
sion of ADC is also 6-bit. The weights are 8-bit signed values,
and each RRAM cell can store 4-bit unsigned weight, which
means four memristor cells are needed to store a weight. The
technology node of CMOS is 65 nm.

PRIME is an entire architectural work, whose simulation
containing CPU, memory, and the data transportation cost on
the bus. But MNSIM only focuses on the simulation of acceler-
ator part, namely the FF-subarrays [6]. Therefore, we simulate
the performance of an FF-subarray for this case study. The
results are shown in Table VII. A computation task with a
256×256 DNN layers is used to evaluate the peak performance
of an FF-subarray with four crossbars.

2) ISAAC: In ISAAC, some modules are not contained
in the reference design of MNSIM, such as the S&H module,
the eDRAM buffer, and the customized DAC/ADC module.
The authors have provided the dynamic power and area con-
sumption of these modules, and we directly import them into
the simulation. For latency and leakage power simulation, we
use the circuits in [49] and [50] as the reference design and
import the performance model into the simulation. The other
configurations are the same as the experiments in ISAAC. The
technology node of CMOS is 32 nm. The memristor crossbar
size is 128. Since the authors have not provided the detailed
device information of the memristor cells, we use RRAM in
this case study.

We simulate the performance of an ISAAC Tile in [7] for
this case study. A special design of ISAAC is the 22-level inner
pipeline structure in an ISAAC tile, which is much different

from the entire-parallel scheme of the reference design in
MNSIM. The area can be directly simulated by the current
simulation flow, but the latency simulation needs to be cus-
tomized to find the critical path of the inner pipeline. After
that, the energy consumption of the 22 cycles can be simu-
lated using the power of each module. The results are shown
in Table VII. The area result is the same as the value in the
original publication. This is because the majority of the area is
consumed by DACs, ADCs, and eDRAMs, and these modules
are regarded as customized modules whose area consumption
are introduced from the original publication. A large-enough
computation task that uses all the 96 crossbars in an ISAAC
Tile is chosen to evaluate the other performances. The energy
consumption and latency are the accumulated values for the 22
pipelined cycles, which accord with the values in the original
publication [7].

VIII. CONCLUSION

In this paper, we have presented the first behavior-level
simulation platform for the memristor-based neuromorphic
computing system. MNSIM proposes a hierarchical struc-
ture of memristor-based neuromorphic computing accelerator,
and provides flexible interfaces to customize the design in
multiple levels. A behavior-level model is proposed to esti-
mate the computing accuracy of the memristor-based structure.
The experiment results show that MNSIM reaches more than
7000× speed-up compared with SPICE. MNSIM also pro-
vides the tradeoff between different designs and estimates the
optimal performance.

In the future, we will further support the simulation for
other structures like dynamic synaptic properties [22], on-chip
training method [51], and inner-layer pipeline structure [7].
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