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ABSTRACT

Inspired by the human brain’s function and efficiency, neuro-
morphic computing offers a promising solution for a wide set
of tasks, ranging from brain machine interfaces to real-time
classification. The spiking neural network (SNN), which en-
codes and processes information with bionic spikes, is an
emerging neuromorphic model with great potential to dras-
tically promote the performance and efficiency of comput-
ing systems. However, an energy efficient hardware imple-
mentation and the difficulty of training the model signifi-
cantly limit the application of the spiking neural network.
In this work, we address these issues by building an SNN-
based energy efficient system for real time classification with
metal-oxide resistive switching random-access memory (R-
RAM) devices. We implement different training algorithms
of SNN; including Spiking Time Dependent Plasticity (STD-
P) and Neural Sampling method. Our RRAM SNN systems
for these two training algorithms show good power efficiency
and recognition performance on realtime classification tasks,
such as the MNIST digit recognition. Finally, we propose a
possible direction to further improve the classification accu-
racy by boosting multiple SNNs.

1. INTRODUCTION

The era of Big Data brings new chances and new chal-
lenges in many fields especially for the applications need-
ing real-time data processing such as the EEG classification,
tracking, etc[1, 2]. These applications demonstrate huge de-
mands for more powerful platforms with higher processing
speed, lower energy consumption, and more intelligent min-
ing algorithms. However, the classic “scaling down” method
is approaching the limit, making it more and more difficult
for CMOS-based computing systems to achieve considerable
improvements from the device scaling [3]. Moreover, the
memory bandwidth required by high-performance CPUs has
also increased beyond what conventional memory architec-
tures can efficiently provide, leading to an ever-increasing
“memory wall” challenge to the efficiency of von Neumann
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architecture. Therefore, innovation in both device technolo-
gy and computing architecture is required to overcome these
challenges.

The spiking neural network (SNN) is an emerging model
which encodes and processes information with sparse time-
encoded neural signals in parallel [4]. As a bio-inspired ar-
chitecture abstracted from actual neural system, SNN not
only provides a promising solution to deal with cognitive
tasks, such as the object detection and speech recognition,
but also inspires new computational paradigms beyond the
von Neumann architecture and boolean logics, which can
drastically promote the performance and efficiency of com-
puting systems [5, 6].

However, an energy efficient hardware implementation and
the difficulty of training the model remain as two important
impediments that limit the application of the spiking neural
network.

On the one hand, we need an applicable computing plat-
form to utilize the potential ability of SNN. IBM proposes
a neurosynaptic core named TrueNorth [7]. To mimic the
ultra-low-power processing of brain, TrueNorth uses several
approaches to reduce the power consumption. Specifically,
TrueNorth uses digital messages between neurons to reduce
the communication overhead and event-driven strategy to
further save the energy computation [6]. However, the C-
MOS based implementation still has some limitations that
are hard to avoid, while some RRAM’s inherent advantages
can overcome these difficulties. First, on-chip SRAM, where
the synapse information is stored, is a kind of volatile mem-
ory with considerable leakage power, while RRAM is non-
volatile with very low leakage power [8]. Another limitation
is that TrueNorth may still needs adders to provide the addi-
tion operation of neuron function, but RRAM crossbar can
do the addition, or the matrix-vector multiplication, with
ultra-high energy efficiency by naturally combing the com-
putation and memory together [9, 10, 11]. Consequently,
RRAM shows potential on implementing low-power spiking
neural network.

On the other hand, from the perspective of algorithm, the
efficient training of SNN and mapping a trained SNN onto
neuromorphic hardware presents unique challenges. Recen-
t work of SNN mainly focuses on increasing the scalability
and level of realism in neural simulation by modeling and
simulating thousands to billions of neurons in biological re-
al time [12, 13]. These techniques provide promising tools
to study the brain but few of them support practical cogni-
tive applications, such as the handwritten digit recognition.
Even TrueNorth [10] uses seven kinds of applications to ver-



ify its performance, but the training and mapping meth-
ods for spike-oriented network are not discussed in detail.
In other words, the mapping problem and efficient training
method for SNN;, especially for the real-world applications,
to achieve an acceptable cognitive performance is severely
demanded.

These two problems are always coupled together and only
by overcoming these two challenges can we actually utilize
the full power of SNN for realtime data processing applica-
tions. In this paper, we discuss these two problems with the
RRAM based system architecture and two different offline
training algorithms of SNN. We use the MNIST digit recog-
nition task[14] as an application example for the realtime
classification. The goal of this paper is to design a RRAM-
based SNN system with higher classification accuracy and to
analyze its strengths and weaknesses compared with other
possible implementations.

The main contribution of this paper includes:

1. We compare different training algorithms of spiking
neural networks for practical cognitive tasks, including
the unsupervised Spike Timing Dependent Plasticity
(STDP), and the supervised method, i.e, the Neural
Sampling learning method. For STDP, we can NOT
provide an acceptable cognitive performance, while the
performance of Neural Sampling method is comparable
to ANN systems for the MNIST digit recognition task.

2. We propose an RRAM-based implementation of differ-
ent architectures of spiking neural networks. The R-
RAM implementation mainly includes an RRAM cross-
bar array working as network synapses, an analog de-
sign of the spiking neuron, an input encoding scheme,
and an mapping algorithm to configure the RRAM-
based spiking neural network.

3. We compare the power efficiency and recognition per-
formance of SNN and the RRAM-based artificial neu-
ral network (ANN). The experiment results show that
ANN can outperform SNN on the recognition accura-
cy, while SNN usually requires less power consumption.
Based on these results, we discuss the possibility of us-
ing boosting methods, which combine some weak SNN
learners together, to further enhance the recognition
accuracy for real-world application.

The rest of this paper is organized as follows: Section II
introduces the background for SNN and RRAM-based hard-
ware architecture. We propose two kinds of RRAM-based
SNN architectures with two different training algorithms
and discuss the potential possibility to boost the recognition
accuracy by combining multiple SNNs together in Section II-
1. Finally, Section IV concludes the paper and proposes some
future directions for RRAM-based SNN systems.

2. BACKGROUND

The spiking neural network consists of layers of spiking
neurons connected by weighted synapses as shown in Fig. 1
[10]. The input data, such as images, will be encoded into
the spike trains and then sent into the network. The output
of the network can be treated as another representation of
the input data, e.g., the corresponding classification results
of the input images. According to Fig. 1 , the two most
important operations in SNN are (1) the nonlinear function
made by spiking neurons; (2) the matrix-vector multiplica-
tion based on the synapse weights.

190

Image - @

) \ e(AT ! : ’ Target pattern 1
. I I
Spike Iralns“ : o Target pattern 2
LI L [ 4 I |

Pattern 1 Pattern 2 Pattern 3 =] Target pattern 3

~ @

N-1 network
Encoding Learning
Figure 1: Spiking Neural Network System Flow.
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The spiking neural network, especially the two most im-
portant operations can be realized by either digital or ana-
log circuits. Different from the digital implementation like
TrueNorth, an analog implementation based on CMOS ana-
log neuron and RRAM crossbar is introduced in our design.
For the nonlinear function, specific circuits for functions like
sigmoid and Leaky Integrate-and-Fire (LIF) have been pro-
posed [15] and used in our design. Thanks to the RRAM
crossbar structure, it is possible to get several orders of en-
ergy efficiency gain for the matrix-vector multiplication op-
eration for weighted synapse computation [9]. We briefly
show how to implement (1) spiking neuron unit; (2) weight
matrix crossbar in the following two subsections.

2.1 Analog Spiking Neuron Unit

LIF neuron unit has an energy efficient implementation in
the analog mode and the details can be found in [15]. Here
we just give the diagram in Fig. 2: The capacitor Chmem
works as an integrator to accumulate the crossbar output
current I,;, which passes through a mirror current source
(T1, Tz). The resistor Rmem functions as the leaky path. T3
works as a digital switch which controls the reset path: Once
the voltage on Vi,em exceeds the threshold Vi, the output
of the comparator would be set to high voltage level, the flip-
flop would send a pulse to the next crossbar and at the same
time, the reset path is conducted, which means the voltage
on Crem 1S reset 10 Vieser. Such design([15] is quite power
efficiency with the average power consumption of ~300nW.
However, it may still bring considerable overhead in very
large SNN system design since there are 14 transistors in
one complete neuron unit.

2.2 RRAM based Crossbar for synapse weight
computation

The RRAM device is a passive two-port element with vari-
able resistance states (an example of 2D filament model of
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Figure 2: The Circuit Diagram of Analog Spiking
Neuron.
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the HfO, based RRAM is shown in Fig. 3(a)). The most
attractive feature of RRAM devices is that they can be used
to build resistive cross-point structure, which is also known
as the RRAM crossbar array (Fig. 3(b)). Compared with
other non-volatile memories like flash, the RRAM crossbar
array can naturally transfer the weighted combination of in-
put signals to output voltages and realize the matrix-vector
multiplication efficiently by reducing the computation com-
plexity from O(n?) to O(1).

As shown in Fig. 3(b), the relationship between the input
voltage vector (V;) and output voltage vector (V,) can be
expressed as follows [16]:

Vo= cky-Vik 1)
&

where k (k = 1,2,..,N) and j (j = 1,2,..,M) are the index

numbers of input and output ports, and the matrix parame-

ter cx,; can be represented by the conductivity of the RRAM

device (gk,;) and the load resistors (gs) as:

9k.j

~ (2)
gs + > Gr
=1

Ck,j =

The continuous variable resistance states of RRAM de-
vices enable a wide range of weight matrices that can be
represented by the crossbar. The precision of RRAM cross-
bar based computation may be limited by Non-Ideal factors,
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Figure 3: (a). Physical model of the HfO, based R-
RAM. (b). Structure of the RRAM Crossbar Array.
[11]
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such as process variations, IR drop[17], drifting of RRAM re-
sistance[18], etc. However, SNN only requires low precision
of single synaptic value, meanwhile the binary input and LIF
operation also alleviate the precision requirement of matrix
vector multiplication. Therefore, the RRAM crossbar array
is a promising solution to realize matrix-vector multiplica-
tion for synapse weight computation in neural networks.

3. RRAM-BASED SPIKING LEARNING SYS-
TEM

For a SNN system used for realtime classification appli-
cations, an offline training scheme is needed to decide the
weights of the neural networks, i.e. coefficients in the cross-
bar matrix. To our best knowledge, there are two kind-
s of SNN training methods to build up classification sys-
tems: (1) Unsupervised SNN training method, for example,
Spike Timing Dependent Plasticity (STDP), is first intro-
duced for extracting features; then the supervised classifier
is introduced to finish the classification task. (2) First train
an equivalent ANN using the gradient-based method, then
transfer ANN to SNN and map SNN to the RRAM-based
system for real-world applications. Both offline SNN sys-
tems are implemented with RRAM crossbar arrays [10, 11],
and the details are shown in the following subsections.

3.1 Unsupervised Feature Extraction + Super-
vised Classifier

As an unsupervised method, STDP is mainly used for fea-
ture extraction. We can not build a complete classification
system only based on STDP. A classifier is usually required
for practical recognition tasks. Therefore, when mapping
the system onto hardware, just as shown in Fig. 4, a five-
layer neural network system is introduced: a two-layer spik-
ing based neural network and a three-layer artificial neural
network.

The first two layer SNN is trained using an unsupervised
learning rule: Spike Timing Dependent Plasticity (STDP)
[19], which updates the synaptic weights according to rel-
ative spiking time of pre- and post-synaptic neurons. The
learning rate is decided by the time interval: the closer the
distance between pre- and post-synaptic spikes, the larger
the learning rate. The weight updating direction is decided
by which neuron spikes first: for the excitatory neuron, if
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Figure 5: System Structure: Transferring ANN to SNN — Neural Sampling Method. [11]

the post-synaptic neuron spikes later, the synapse will be
strengthened; otherwise, it will be weakened. When every
synaptic weight no longer changes or is set to 0/1, the learn-
ing process is finished.

There is a converting module between the two layer SNN
and 3-layer ANN to convert the spike trains into the spiking
count vectors. Then the spike count vectors are sent into the
following layers of the network (the 3-layer ANN). We use a
3-layer ANN as a classifier to process the features extracted
from the input data by the previous 2-layer SNN. We use
the CMOS analog neuron in Section II for the LIF neuron;
and the RRAM crossbar for synaptic computation in both 2-
layer SNN (vector addition) and 3-layer ANN (matrix vector
multiplication).

An experiment is made on MNIST digit recognition task
to evaluate the RRAM-based SNN system performance. The
training algorithm is implemented on the CPU platform
where LIF neurons are used in the first two layers and the
sigmoid neurons are used in the last three layers. For the
testing process (forward propagation of neural networks),
we use circuit level simulation where the weight matrix is
mapped to RRAM-based crossbar. Since the input images
are 28 x 28 sized 256-level gray images. The five-layer spiking
neural network system has five layers of neurons in all and
the experiment result with the network size of “784 x 100SNN
+ 100x50x 10ANN” shows the recognition accuracy of 91.5%
on CPU platform and 90% on RRAM-based crossbar model
(circuit simulation result). The performance is a little worse
than that of the three-layer ANN sized “784x100x 10" with
the recognition accuracy of 94.3% on CPU platform and 92%
on RRAM-based crossbar model (circuit simulation result).
Moreover, when we change the supervised classifier into a
two-layer SVM and make the system of “784x50 STDP +
50x10 SVM?”, the recognition accuracy on CPU platform on-
ly reaches 90% while the traditional “784 x50 PCA + 50x 10
SVM” gets the accuracy of 94%. As PCA is usually the
baseline for evaluating the performance of feature extrac-
tion, STDP does NOT demonstrate itself as an exciting
method for MNIST digit recognition tasks.

We observe that ANN consumes more power than SNN
when ANN use similar or even smaller number of neurons,
when both ANN and SNN use RRAM crossbar to imple-
ment matrix vector multiplication. Here we only consider
the crossbar and the neuron power consumption. For exam-
ple, the proposed “784x100 SNN + 100x50x10 ANN” con-
sumes 327.36mW on RRAM while the power consumption
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increases to 2273.60mW when we directly use “784x100x 10
ANN?”. The power (energy) saving of SNN comparing to AN-
N mainly comes from the different coding scheme. The input
voltage of SNN can be binary since it transforms the numer-
ic information into the temporal domain, so there is no need
for SNN to hold a large voltage range to represent multi-
ple input states as implemented in ANN. ANN needs input
voltages of 0.9V, but SNN can work with much lower volt-
age supply (0.1V). Furthermore, binary coding in SNN can
avoid the usage of large number of AD/DA on the input and
output interfaces. The AD/DA power consumption, which
is not considered here, consumes a considerable large por-
tion of total power consumption in the RRAM based NN
systems[20].

3.2 Transferring ANN to SNN - Neural Sam-
pling Method

The Neural Sampling method provides a way to transfer
ANN to SNN; thus offering a useful training scheme on clas-
sification tasks. An equivalent transformation is made be-
tween the nonlinear function (named Sigert function, which
is similar to sigmoid function) of ANN and the Leaky Integrate-
and-Fire (LIF) neuron of SNN. Therefore, it is possible to
first train the ANN made up of the stacked Restricted Boltz-
mann Machine (RBM) structure using Contrastive Diver-
gence (CD) method. In this way, a satisfying recognition
accuracy of ANN can be first achieved. And then, the spike-
based stacked RBM network with the same synaptic weight
matrices can also be implemented for the classification tasks.
The system structure is shown in Fig. 5 [11].

Since spike trains propagate in the spiking neural network,
original input = [x1,--- ,xn] should be mapped to spike
trains X (t) = [X1(¢), -, Xn(t)] before running the test
samples where X;(¢) is a binary train with only two states
0/1. For the it" input channel, the spike train is made of N;
spike pulses with each pulse width Ty, which implies that
the spike train lasts for the length of time Ny - Ty. Suppose
the spike number of all input channels during the given time
Ny - Ty is Ns, then the spike count N; of the it" channel is
allocated as:

N¢—1
Ni= Y Xi(kTo) = romnd(Ns - ——)  (3)
k=0 D k1 Uk
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Then the N; spikes of the it" channel is randomly set on
the N; time intervals. For an ideal mapping, we would like
to have N; << N; to keep the spike sparsity on the time
dimension. However, for the speed efficiency, we would like
the running time N; - Ty to be short. Here, Tp is defined
by the physical clock, i.e. the clock of the pulse generator.
which implies that we can only optimize N; directly. Here,
we define the bit level of the input as

Ny )

mean(N;)
which evaluates the tradeoff between time efficiency and the
accuracy performance.

(4)

log( (5)

We train the SNN with the size of 784 x 500 x 500 x 10.
And the parameters are shown in Table 1. The experi-
ment results show that the recognition accuracy of MNIST
dataset is 95.4% on the CPU platform and 91.2% on the ide-
al RRAM-based hardware implementation. The recognition
performance decreases about 4% because it is impossible to
satisfy with Ny << Ns on the RRAM platform.

We show the results for recognition under different bit lev-
el quantization of input signal and RRAM devices, together
with RRAM process variation and input signal fluctuation.
The simulation results in Fig. 6 (a) show that a 8-bit RRAM
device is able to realize a recognition accuracy of nearly 90%.
The simulation results in Fig 6 (b) shows that the input sig-
nal above 6-bit level achieves satisfying recognition accuracy
(>85%). Based on the 8-bit RRAM result, different level-
s of signal fluctuation are added on the 8-bit input signal.
The result shown in Fig 6 (c) demonstrates that the perfor-
mance of accuracy just decreases ~3% given 20% variation.
Fig. 6 (d) shows that when RRAM device is configured to
8-bit level with the 6-bit level input, the performance does
not decrease under 20% process variation. The sparsity of
the spike train leads to the system robustness, making it
insensitive to the input fluctuation and process variation.

Table 1: Important Parameters of the SNN System

Network Size 784 % 500 x 500 x 10
Number of Input Spike (V) 2000
Number of Pulse Interval (Ny) 128
Input pulse Voltage (V) 1V
The Pulse Width (7p) Ins
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The power consumption of the system is mainly contribut-
ed by three parts: the crossbar, the comparator and the
RyemCmem leaky path. The simulation results show that
the power consumption is about 3.5 mW on average. Howev-
er, it takes Ny = 128 cycles with the physical clock Ty = 1ns.
Though input conversion from numeral values to spike train-
s leads to about 100X clock rate decrease, the system is
able to complete the recognition task in real time
(~1us/sample) thanks to the short latency of RRAM de-
vice.

3.3 Discussion on How to Boost the Accuracy
of SNN

The experiment results in the above subsections show that
the recognition accuracy will decay after transferring an AN-
N to a SNN. However, due to the ultra-high integration den-
sity of the RRAM devices and the 0/1 based interfaces of
SNN, SNN tends to consume much less circuit area and pow-
er compared with ANN. This result inspires us that we may
integrate multiple SNN with the same or even less circuit
area and power consumption of ANN, and combine these
SNNs together to boost the accuracy and robustness of the
SNN system.

Previously, we have proposed an ensemble method to boost
the accuracy of RRAM-based ANN systems [20], named
SAAB (Serial Array Adaptive Boosting), which is inspired
by the AdaBoost method [21]. The basic idea of AdaBoost,
which is also its major advantage, is to train a series of learn-
ers, such as ANNs or SNNs, sequentially, and every time we
train a new learner, we try to “force” the new learner to pay
more attention to the “hard” samples incorrectly classified
by previous trained learners in the training set. The pro-
posed technique can improve the accuracy of ANN by up to
13.05% on average and ensure the system performance under
noisy conditions in approximate computation applications.

SAAB boost the computation accuracy at the cost of con-
suming more power and circuit area. As SNN usually con-
sumes much less area and power compared with the ANN,
there is a chance to integrate multiple SNNs under the same
circuit resource limitation of ANN. And these SNNs can be
boosted together by the similar idea of SAAB. However, the
inherent attributions of SNN systems should be considered
when designing the boosting algorithm. According to our
observation, there are two types of errors in the SNN-based
classification tasks: (i). a “traditional” type: more than one
neuron in the output layer spikes and the neuron spiking
the most is not the target neuron; and (ii). a “special” type
of SNN: no neuron in the output layer spikes; It is interest-
ing to observe that most of the wrong trials are the “special”
type and it can be reduced slightly when increasing the input



spike counts. We regard such samples as “the difficult clas-
sifying cases”. When seeking for the possibility to make up
the performance loss after transferring ANN to SNN with a
boosting-based method, this problem should be considered.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the possibility of designing R-
RAM based SNN system for the realtime classification. Two
different SNN systems based on different training algorithm-
s are shown, including the training methods and hardware
architecture. We also compare the energy efficiency and ac-
curacy for MNIST application of both systems. Finally, we
discuss the possibility of how to boost the accuracy of SNN.

For future work, besides the boosting algorithm for multi-
ple SNNs, we propose the following research directions: (1)
Design the basic core structure for large SNN ”processor”
based on RRAM crossbars. For the two proposed SNN sys-
tems in this paper, we design it following the design style of
fixed accelerators without considering the scalability or re-
configurability for bigger or different problems. (2) Design
on-line learning RRAM based SNN system. To achieve in-
telligent systems, we need the system to learn by itself. How
to use the inherent learning feature of RRAM to build up
on-line learning computing system for real world application
remains an interesting problem.
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