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Abstract—Approximate computing is a promising design
paradigm for better performance and power efficiency. In
this paper, we propose a power efficient framework for
analog approximate computing with the emerging metal-
oxide resistive switching random-access memory (RRAM)
devices. A programmable RRAM-based approximate computing
unit (RRAM-ACU) is introduced first to accelerate approximated
computation, and an approximate computing framework with
scalability is then proposed on top of the RRAM-ACU. In order
to program the RRAM-ACU efficiently, we also present a detailed
configuration flow, which includes a customized approxima-
tor training scheme, an approximator-parameter-to-RRAM-state
mapping algorithm, and an RRAM state tuning scheme. Finally,
the proposed RRAM-based computing framework is modeled
at system level. A predictive compact model is developed to esti-
mate the configuration overhead of RRAM-ACU and help explore
the application scenarios of RRAM-based analog approximate
computing. The simulation results on a set of diverse bench-
marks demonstrate that, compared with a x86-64 CPU at 2 GHz,
the RRAM-ACU is able to achieve 4.06–196.41× speedup and
power efficiency of 24.59–567.98 GFLOPS/W with quality loss
of 8.72% on average. And the implementation of hierarchical
model and X application demonstrates that the proposed RRAM-
based approximate computing framework can achieve >12.8×
power efficiency than its pure digital implementation counter-
parts (CPU, graphics processing unit, and field- programmable
gate arrays).

Index Terms—Approximate computing, neural network, power
efficiency, resistive random-access memory (RRAM).

I. INTRODUCTION

POWER efficiency has become a major concern in mod-
ern computing system design [1]. The limited battery

capacity urges power efficiency of hundreds of giga float-
ing point operation per second per watt (GFLOPS/W) for
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mobile embedded systems to achieve the desirable portability
and performance [2]. However, the highest power efficiency
of contemporary CPU and graphics processing unit (GPU)
systems is only ∼10 GFLOPS/W, which is expected not
to substantially improve in the predictable scaled technol-
ogy node [3], [4]. As a result, researchers are looking for
alternative architectures and technologies to achieve further
performance and efficiency gains [5].

Approximate computing provides a promising solution to
close the gap of power efficiency between present-day capa-
bilities and future requirements [6]. Approximate computing
takes advantage of the characteristic that many modern appli-
cations, ranging from signal processing, pattern recognition to
computer vision, are able to produce results with acceptable
quality even if many computation are executed imprecisely [7].
This tolerance of imprecise computation can be leveraged for
substantial performance and efficiency gains and has inspired
a wide range of architectural innovations [1], [8].

Recent work in approximate computing mainly focuses on
hardware design of the basic computing elements, such as
approximate adders and logics [9]–[11]. These techniques have
adequately demonstrated the benefit of approximate comput-
ing, but the fixed functionality and low-level design stage
limit the further improvement of performance and efficiency.
Moreover, these techniques are all based on the traditional
CMOS technology, despite of the circumstance that the inno-
vations of device technology have offered a great opportunity
for radically different forms of architecture design and can
significantly promote the performance and efficiency of com-
puting systems [12].

Our objective is to use the emerging metal-oxide resis-
tive random-access memory (RRAM) devices to design a
reconfigurable approximate computing framework with both
power efficiency and computation generality. The RRAM
device (or the memristor) is one of the promising innova-
tions that can advance Moore’s Law beyond the present silicon
roadmap horizons [13]. RRAM devices are able to support
a large number of signal connections within a small foot-
print by taking advantage of the ultraintegration density. And
more importantly, RRAM devices can be used to build resis-
tive cross-point structure [14], also known as the RRAM
crossbar array, which can naturally transfer the weighted
combination of input signals to output voltages and real-
ize the matrix–vector multiplication with incredible power
efficiency [15], [16].

To realize this goal, the following challenges must be over-
come: first of all, an architecture, from the basic processing
unit to a scalable framework, is required to provide an efficient
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hardware implementation for RRAM-based analog approxi-
mate computing. Second, from the perspective of software,
a detailed configuration flow is demanded to program the
hardware efficiently for each specific application. Finally, a
comprehensive analysis of the system performance and major
tradeoffs is needed to explore the application scenarios of
RRAM-based analog approximate computing.

In this paper, we explore the potential of RRAM-based ana-
log approximate computing. The main contributions of this
paper include the following.

1) We propose a power efficient RRAM-based approximate
computing framework. The framework is scalable and is
integrated with our programmable RRAM-based approx-
imate computing units (RRAM-ACUs), which work as
universal approximators. Simulation results show that
the RRAM-ACU offers less than 1.87% error for six
common complex functions.

2) A configuration flow is proposed to program
RRAM-ACUs. The configuration flow includes
three phases: a) a training scheme customized
for RRAM-ACU to train its neural approximator;
b) a parameter mapping scheme to convert the param-
eters of a trained neural approximator to appropriate
RRAM resistance states; and c) a state tuning scheme
to tune RRAM devices to target states.

3) The proposed RRAM-based computing system is mod-
eled at system level to estimate the system performance
and explore the major tradeoffs and application sce-
narios of RRAM-based analog approximate computing.
Particularly, a predictive compact model is developed
to evaluate the configuration overhead of RRAM-ACU.

4) A set of diverse benchmarks are used to evaluate the
performance of RRAM-based approximate computing.
Experiment results demonstrate that, compared with a
x86-64 CPU at 2 GHz, our RRAM-ACU provides power
efficiency of 249.14 GFLOPS/W and speedup of 67.29×
with quality loss of 8.72% on average. And the imple-
mentation of hierarchical model and X (HMAX) appli-
cation demonstrates that the proposed RRAM-based
approximate computing framework is able to support
large scale applications under different noisy conditions,
and can achieves >12.8× power efficiency improve-
ments than the CPU, GPU, and field- programmable
gate array (FPGA) implementation counterparts.

The rest of this paper is organized as follows. Section II pro-
vides the basic background knowledge. Section III introduces
the details of the proposed RRAM-based approximate comput-
ing framework. The configuration flow and modeling method
are depicted in Section IV and V, respectively. Experimental
results of different benchmarks are presented in Section VI.
Finally, Section VII concludes this paper.

II. PRELIMINARIES

A. RRAM Characteristics and Device Model

The RRAM device is a passive two-port elements
based on TiOx, WOx, HfOx [17] or other materials with
variable resistance states. The most attractive feature of

Fig. 1. (a) Physical model of the HfOx-based RRAM. The RRAM resistance
state is determined by the tunneling gap distance d, and d will evolve due
to the filed and thermally driven oxygen ion migration. (b) Typical DC I–V
bipolar switching curves of HfOx RRAM devices reported in [18].

RRAM devices is that they can be used to build resistive
cross-point structure, which is also known as the RRAM cross-
bar array. Compared with other nonvolatile memories like
flash, the RRAM crossbar array can naturally transfer the
weighted combination of input signals to output voltages and
realize the matrix–vector multiplication efficiently by reducing
the computation complexity from O(n2) to O(1). And the con-
tinuous variable resistance states of RRAM devices enable a
wide range of matrices that can be represented by the crossbar.
These unique proprieties make RRAM devices and the RRAM
crossbar array promising tools to realize analog computing
with great efficiency.

Fig. 1(a) demonstrates a model of the HfOx-based RRAM
device [18]. The structure is a resistive switching layer
sandwiched between two electrodes. The conductance is expo-
nentially dependent on the tunneling gap distance (d) as

I = I0 · exp

(
− d

d0

)
· sinh

(
V

V0

)
. (1)

The ideal resistive crossbar-based analog computing
requires both linear I–V relationship and continuous variable
resistance states. However, nowadays RRAM devices can not
satisfy these requirements perfectly. Therefore, we introduce
the practical characteristics of RRAM devices in this section.

1) The I–V relationship of RRAM devices is nonlinear.
However, when V is very small, an approximation can be
applied as sinh(V/V0)–(V/V0). Therefore, the voltages
applied on RRAM devices should be limited to achieve
an approximate linear I–V relationship [19].

2) As shown in Fig. 1(b), the SET process [from a high-
resistance state (HRS) to a low-resistance state (LRS)] is
abrupt while the RESET process (the opposite switching
event from LRS to HRS) is gradual. The RESET process
is usually used to achieve multiple resistance states [20].

3) Even in the RESET process, the RRAM resistance change
is stochastic and abrupt. This phenomenon is called
“variability.” The RRAM variability can be approximated
as a lognormal distribution and can make the RRAM
device miss the target state in the switching process.

In this paper, we use the HfOx-based RRAM device
for study because it is one of the most mature materials
explored [17]. The analytical model is put into the circuit
with Verilog-A [18], [21]. We use H-simulation program with
integrated circuit emphasis (HSPICE) to simulate the circuit
performance and study the device and circuit interaction issues
for RRAM-based approximate computing.
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Fig. 2. Overview of the hardware architecture of RRAM-based analog approximate computing. (a) and (b) RRAM approximate computing framework.
(c) and (d) RRAM-ACU.

Fig. 3. Three-layer feedforward neural network with one hidden layer.

B. Neural Approximator

Fig. 3 illustrates a simple model of a three-layer feed-
forward artificial neural network with one hidden layer. The
computation between neighbor layers of the network can be
expressed as

yj = fj

(
n∑

i=1

wij · xi + bj

)
(2)

or

�y = f
(

W · �x+ �b
)

(3)

where xi is the value of node i in the input (hidden) layer, and
yj represents the result of node j in the hidden (output) layer.
wij is the connection weight between xi and yj. bj is an offset.
fj(x) is an activation function, e.g., sigmoid function

f (x) = 1

1+ e−x
. (4)

It has been proven that a universal approximator can be
implemented by a three-layer feedforward network with one
hidden layer and sigmoid activation function [22], [23]. Table I
gives the maximum errors of the approximations of six
common functions by this method based on the MATLAB
simulation. The mean square errors (MSEs) of approximations
are less than 10−6 after the network training algorithm com-
pletes1 [24]. The neural approximator offers less than 1.87%
error for the six common complex functions. This precision

1Theoretically, the network’s accuracy shall increase with the network size.
However, it is usually more difficult to train a network with a bigger size.
The network may easily fall into a local minima, instead of the global optimal
solution, and thus sometimes provide a worse result [24].

TABLE I
MAXIMUM ERRORS (%) OF NEURAL APPROXIMATORS

level is able to satisfy the requirements of many approximate
computing applications [1].

III. RRAM-BASED ANALOG APPROXIMATE COMPUTING

Fig. 2 demonstrates an overview of the hardware imple-
mentation of RRAM-based analog approximate computing.
In this section, we will introduce this framework from the
basic RRAM-ACU to the scalable RRAM-based approximate
computing framework.

A. RRAM-Based Approximate Computing Unit

Fig. 2(c) and (d) shows the proposed RRAM-ACU. The
RRAM-ACU is based on an RRAM hardware implementation
of a three-layer network (with one hidden layer) to work as a
universal approximator. The mechanism is as follows.

As described in (2)–(4), the neural approximator can be
conceptually expressed as: 1) a matrix–vector multiplica-
tion between the network weights and input variations and
2) a sigmoid activation function.

For the matrix-vector multiplication, this basic operation can
be mapped to the RRAM crossbar array illustrated in Fig. 4.
The output of the crossbar array can be expressed as

Voj =
∑

k

Vik · ckj (5)

where, for Fig. 4(a), ckj can be represented as

ckj = −gkj

gs
(6)

and for Fig. 4(b)

ckj = gkj

gs +∑N
l=1 gkl

(7)

where gkj is the RRAM conductance state in the crossbar array.
And gs represents the conductivity of the load resistance.
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(a) (b)

Fig. 4. Two implementations of RRAM crossbar arrays. (a) With and (b)
without Op Amps.

Both two types of crossbar array are efficient to real-
ize matrix–vector multiplication by reducing the computation
complexity from O(n2) to O(1).

The latter one, which does not require Op Amps, consumes
less power and can be smaller in size. However, there are
some drawbacks with the latter implementation when building
multilayer networks.

1) ckj not only depends on the corresponding gkj, but also
depends on all the RRAM devices in the same column.
It is difficult to realize a linear one-to-one mapping
between the network weight wij and the RRAM con-
ductance gij. Although previous work proposed some
approximate mapping algorithms, the computation accu-
racy is still a problem [25].

2) The parameters of neighbor layers will influence each
other through RS. Voltage followers or buffer amplifiers
are demanded to isolate different circuit stages and guar-
antee the driving force [26], [27]. The size and energy
savings compared with the first type implementation will
be wasted.

The first implementation can overcome these drawbacks.
Op Amps can enhance the output accuracy, make ckj linearly
depend on the corresponding gkj, and isolate neighbor layers.
So we choose the first implementation to build RRAM-ACU.

Since both R (the load resistance) and g (the conductance
states of RRAM devices) can only be positive, two cross-
bar arrays are needed to represent the positive and negative
weights of a neural approximator, respectively, with the help
of analog inverters [28] as shown in Fig. 6.

The practical weights of the network can be expressed as

wkj = R · (gkj(postive) − gkj(negative)
)
. (8)

We also note that the polarities of the terminals of the RRAM
devices in two crossbar arrays should be set to opposite
directions. This technique is aimed to make the resistance
state deviations caused by the currents passing through the
paired RRAM devices cancel each other [29]. We refer to this
technique as RRAM pairing and it is shown in Fig. 6.

The sigmoid activation function can be generated by the
circuit described in [30] and a complete feedforward network
without hidden layer is accomplished.

Finally, by combining two networks together, a three-
layer feedforward network unit is realized. As described in
Section II-B, this network can work as a universal approxima-
tor to perform approximated computation. And a basic RRAM
approximate computing unit is accomplished.

B. RRAM-Based Approximate Computing Framework

The overview of the proposed RRAM approximate com-
puting framework is shown in Fig. 2(a) and (b). The build-
ing blocks of the framework are the RRAM processing
elements (RRAM PEs). Each RRAM PE consists of sev-
eral RRAM-ACUs to accomplish algebraic calculus. Each
RRAM PE is also equipped with its own digital-to-analog
converters (DACs) to generate analog signals for processing.
In addition, the RRAM PE may also have several local memo-
ries, e.g., analog data stored in form of the resistance states of
RRAM devices, or digital data stored in the dynamic random
access memory or static random access memory. Both use and
type of local memory depends on the application requirement
and we will not limit and discuss its implementation in detail
in this paper. On top of that, all the RRAM PEs are organized
by two multiplexers with round-robin algorithm.

In the processing stage, the data will be injected into the
platform sequentially. The input multiplexers will deliver the
data into the relevant RRAM PE to perform approximate
computing. The data will be fed into the RRAM PE in dig-
ital format and the DACs in each RRAM PE will convert
the date into analog signals. Each RRAM PE may work
under low frequency but a group of RRAM PEs can work
in parallel to achieve high performance. Finally, the output
data will be transmitted out from the RRAM PE by output
multiplexer for further processing, e.g., be converted back
into digital format by a high-performance analog-to-digital
converter (ADC).

The framework is scalable and the user can configure it
according to individual demand. For example, for tasks requir-
ing power efficiency, it is better to choose low power Op Amps
to form the RRAM-ACUs and each RRAM PE may work in
a low frequency. On the other hand, high speed Op Amps,
analog to digital (AD)/digital to analogs (DAs) and even
hierarchical task allocation architecture will be preferred for
high-performance applications.

IV. CONFIGURATION FLOW FOR RRAM-ACU

The RRAM-based analog approximate computing hardware
requires a configuration flow to get programmed for each spe-
cific task. In this section, we discuss the detailed configuration
flow for the proposed RRAM-ACUs. The flow is illustrated
in Fig. 5. It includes three phases to solve the following
problems.

1) Training Phase: How to train a neural approximator
in an RRAM-ACU to learn the required approximate
computing task?

2) Mapping Phase: The parameters of a trained approxima-
tor can NOT be directly configured to the RRAM-ACU.
We need to map these parameters to appropriate RRAM
resistance states in the RRAM crossbar array.

3) Tuning Phase: After we achieve a set of RRAM resis-
tance states for an approximate computing task, how to
tune the RRAM devices accurately and efficiently to the
target states?

All these phases will be introduced in detail in the following
sections.
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Fig. 5. Configuration flow for RRAM-ACU. The flow includes three phases: 1) training scheme customized for RRAM-ACU to train the neural approximator;
2) parameter mapping scheme to convert the parameters of a trained neural approximator to appropriate RRAM resistance states; and 3) RRAM state tuning
scheme to tune RRAM devices to target states efficiently.

Fig. 6. RRAM pairing technique.

Fig. 7. Comparison between the mathematical sigmoid function and its ana-
log implementation reported in [30]. The output of analog implementation is
multiplied by 0.5 for normalization. A significant difference can be observed.

A. Training Phase: Neural Approximator Training Algorithm

The RRAM approximate computing unit is based on an
RRAM implementation of neural approximator. The approx-
imator must be trained efficiently for each specific function.
The training process can be realized by adjusting the weights
in the network layer by layer [24]. The update of each
weight (wji) can be expressed as

wji ← wji + η · δj · xi (9)

where xi is the value of node i. η is the learning rate. δj is
the error back propagated from node j in the next neighbor
layer. δj depends on the derivative of the activation function
(e.g., sigmoid function) as described in Section II-B.

In the RRAM-ACU training phase, both calculations of sig-
moid function and its derivative should be adjusted according
to the analog sigmoid circuit. Fig. 7 illustrates a compari-
son between the accurate mathematical sigmoid function and
its hardware implementation reported in [30]. The I–V rela-
tionship is simulated with HSPICE. There is a significant
difference between them. Therefore, we replace the mathe-
matical sigmoid activation function by its simulation results
in the training scheme of RRAM-ACU.

Finally, it is worth noting that most weights are small
(around zero) after a proper training.2 For example, more than
90% weights of the trained network3 are within the range of
[−1.5, 1.5] for all the benchmarks used in this paper. The lim-
itation of weight amplitude can simplify the design of RRAM
state tuning scheme and help improve the tuning speed.

B. Mapping Phase: Mapping Neural Approximator Weights
to RRAM Conductance States

Once the weights of a neural approximator are determined,
the parameters need to be mapped to the appropriate states of
RRAM devices in the crossbar arrays. Improperly converting
the network weights to the RRAM conductance states may
result in the following problems.

1) The converted results are beyond the actual range of the
RRAM device.

2) The dynamic range of converted results is so small that
the RRAM state may easily saturate.

3) The converted results are so high that the summation
of output voltages will exceed the working range of
Op Amps.

In order to prevent the above problems, we propose a
parameter mapping algorithm to convert the weights of neu-
ral approximator to appropriate conductance states of RRAM
devices.

The mapping process can be abstracted as an optimiza-
tion problem. The feasible range of the weights of neural
approximators can be expressed as a function of RRAM
parameters

−RS · (gON − gOFF) ≤ w ≤ RS · (gON − gOFF) (10)

where gON = (1/RON) and gOFF = (1/ROFF). RON and ROFF
are the lowest and highest resistance states of RRAM devices.
All the weights should be scaling within this range.

2A neural network will trend to overfit when many weights of the net-
work are large [31]. Overfitting is a problem that the model learns too much,
including the noise, from the training data. The trained model will have poor
predictive performance on the unknown testing data which are not covered
by the training set.

3We use �2 regularization in the training scheme. Regularization is a tech-
nique widely used in the neural network training to limit the amplitude of
network weight, avoid overfitting, and improve model generalization [31]. To
be specific, for the �2 regularization, a penalty of the square of the two-norm
of network weights will be proportionally added to the loss function of the
network. So the error of the network and the amplitude of weights will be
balanced and optimized simultaneously in the training process [31].
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In order to extend the dynamic range and reduce the impact
of process variation, we adjust gON and gOFF to

g′ON =
1

η ·�ON + RON
(11)

g′OFF =
1

ROFF − η ·�OFF
(12)

where �ON and �OFF represent the maximum deviation of
RON and ROFF induced by process variation of the crossbar
array, respectively. η is a scale coefficient which is set to
1.1∼1.5 in our design to achieve a safety margin.

The risk of improper conversion can be measured by the
following risk function:

Risk
(
gpos, gneg

) = ∣∣gpos − g′mid

∣∣+ ∣∣gneg − g′mid

∣∣ (13)

where

g′mid =
g′ON + g′OFF

2
(14)

and gpos and gneg represent the conductance states of each
paired RRAM devices in the positive and negative crossbar
arrays, respectively, as (8).

Combining the constraints and the risk function, the param-
eter mapping problem can be described as the optimization
problem shown below(

g∗pos, g∗neg

)
= arg min Risk (15)

s.t.

⎧⎨
⎩

RS · (g∗pos − g∗neg) = w
g′ON ≤ gpos ≤ g′OFF
g′ON ≤ gneg ≤ g′OFF.

(16)

The optimal solutions of this optimization problem are
{

g∗pos = g′mid + w
2RS

g∗neg = g′mid − w
2RS

.
(17)

These are the appropriate conductance states of RRAM
devices with the minimum risk of improper parameter
conversion.

C. Tuning Phase: Tuning RRAM Devices to Target States

After the weights of neural approximator are converted into
RRAM conductance states, a state tuning scheme is required
to program RRAM devices in an RRAM-ACU to target states.

Due to the stochastic characteristics of RRAM resistance
change, program-and-verify (P&V) method is commonly used
in multilevel state tuning [32]. As shown in Fig. 8, the RRAM
device will be first initialized to LRS. Then a sequence of write
pulses will be applied to tune RRAM devices gradually. Each
write pulse is followed by a read pulse to verify the current
conductance state. The amplitude of read pulse should be small
enough to not change the RRAM conductance state. The P&V
operation will keep on performing until the verify step detects
that the RRAM device has reached the target range.

The P&V method choose LRS as the initial state because
of the following reasons.

1) LRS is much more uniform than HRS. When an RRAM
device is switched between HRS and LRS repeatedly,

Fig. 8. P&V scheme for multilevel RRAM conductance state tuning.

Fig. 9. Proposed state tuning scheme for RRAM-ACU.

LRS is able to be uniform while HRS usually varies a
lot among different cycles [17], [18], [33].

2) As shown in Fig. 1(b), the resistance change process
from LRS to HRS is gradual, while the opposite process
is abrupt. It is easier to achieve multiple resistance states
from LRS than HRS, although HRS may help reduce the
power consumption.

3) Finally, the target resistance states are closer to LRS
according to (17). As HRS is usually >100× larger than
LRS, initializing RRAM devices to LRS will require
much less pulses to reach the target resistance range.

However, tuning RRAM devices to accurate g′mid, g∗pos,
or g∗neg as (17) still requires large effort with P&V method.
Considering the physical characteristics of RRAM devices and
the circuit architecture of RRAM-ACU, we propose a sim-
ple but efficient RRAM state tuning scheme as illustrated in
Fig. 9. The proposed RRAM state tuning scheme includes the
following two steps.

Step 1: Initializing all the RRAM devices in the paired
crossbar arrays to the same initial state gi. We hope
that only one RRAM device in the pair needs tun-
ing after we initialize all the RRAM devices to gi.
The choice of gi is a major concern in this state
tuning scheme. It should be able to approximate
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Fig. 10. Tuning RRAM devices with half-select method to mitigate sneak
path problem.

most of the optimal states (g′mid + (|w|/2RS)) in
the crossbar array, and should be both uniform and
easy to reach for RRAM devices. Therefore, we
choose gi to be close to g′mid because most wij

are close to zero as discussed in Section IV-A and
the optimal states (g′mid+ (|w|/2RS)) will be close
to g′mid. On top of that, we choose gi, which should
be a uniform LRS that can be achieved easily
according to the physical characteristics of RRAM
devices. For example, for the HfOx RRAM devices
used in this paper, the lowest resistance state is
RON ≈ 290� [18]. And we set gi to ∼(500�)−1 as
it is both close to gON/2 and can be easily achieved
by limiting the compliance current [18].

Step 2: Tuning the positive and negative crossbar arrays to
satisfy RS · (gpos − gneg) = w. After initializing
RRAM devices to gi ≈ g′mid, only one RRAM
device in each paired RRAM devices will need to
be tuned according to (17). The state tuning scheme
will perform P&V operations on the corresponding
RRAM device until (16) is satisfied.

Another problem of the state tuning scheme is that the vari-
ability of resistance state change may make RRAM devices
miss the target conductance range. Considering that the set
back process is abrupt and hard to control, and most target
states that are close to gi (e.g., the requirement of resistance
change is usually around tens of Ohm), in this paper, the pro-
posed state tuning scheme will reset the RRAM device to
the initial state gi. There is no need to prepare a complicated
partial setback operation at the cost of increasing the circuit
complexity.

The last problem in the state tuning scheme is the sneak
path problem. Sneak path usually exits in the memory archi-
tecture. As only one cell will be selected in the memory read
or write operation, it will be difficult for the architecture to
isolate the selected RRAM device from the unselected cells.
The unselected cells will form a sneak path, which will disturb
the output signals and impact the unselected cells’ states [34].
However, when an RRAM crossbar array is used for compu-
tation, all the cells will be selected for computation. In other
words, no sneak path can be formed in this case. By contrast,
each output port can only be used to tune one RRAM device
in the corresponding column. We cannot select and tune all
the RRAM devices in the crossbar array at the same time. The
sneak path still exists in the state tuning scheme.

In order to mitigate the impact of sneak path in the state
tuning scheme, the half-select method is adopted [14]. Fig. 10
illustrates the principle of half-select method. The method is

aimed to reduce the voltage drop between the selected and uns-
elected cells to reduce the sneak path current and its impact.
A half-select voltage (VW/2), instead of connecting to the
ground, will be applied on the unselected word line and bit
line. The maximum voltage drop between the selected and
unselected cells is VW/2 instead of VW . Therefore, the sneak
path current is reduced and the unselected cells are protected.

The half-select method mitigate the sneak path problem at
the cost of extra power consumption. We further reduce the
direct component in the original half-select method to alleviate
this problem. To be specific, a (VW/2) and (−VW/2) voltage
will be applied on the world line and bit line of the selected
cell, respectively. And other unselected cells will be connect
to the ground instead of a half-select voltage (VW/2). This
technique can reduce around 75% of the power consumption
compared with the original method.

Finally, we note that only the RRAM devices in different
word lines and bit lines can be tuned in parallel. A parallel
state tuning scheme can significantly improve the tuning speed
of RRAM-ACU but will require extra copies of peripheral cir-
cuits and additional control logic. As the energy consumption
(the product of tuning time and power consumption) of tun-
ing the entire RRAM crossbar array remains almost the same,
there will be a tradeoff between the tuning speed and the cir-
cuit size in the RRAM state tuning scheme. In order to save
more area for AD/DAs and Op Amps, each RRAM-ACU is
equipped with only one set of tuning circuit in this paper.

V. SYSTEM MODELING AND OVERHEAD DISCUSSION

In this section, we discuss modeling the performance and
energy consumption of the proposed RRAM-based analog
approximate computing system at the system level. The model
will be used to analyze the system performance, quantize
and demonstrate major tradeoffs, and explore the application
scenarios of RRAM-based analog approximate computing.

A. System Level Modeling

Modeling an RRAM-based approximate computing at the
system level mainly includes three parts.

1) Modeling the RRAM crossbar array and its peripheral
circuits, such as Op Amps, sigmoid circuits, and analog
inverters.

2) Modeling the interface: AD/DAs.
3) Evaluating the configuration overhead, especially the

time and energy consumption of RRAM state tuning.
For the first part, we use a Verilog-A RRAM device

model to build up the simulation program with integrated
circuit emphasis (SPICE)-level crossbar array as described
in Section II-A. We use a fine-grained SPICE-level simu-
lation because the physical characteristics RRAM devices
are different from the ideal linear resistance with continuous
variable states, and other nonideal factors, such as the inter-
connect resistance (IR)-drop in the crossbar, are also difficult
to estimate.

For the second part, we extract the parameters like accu-
racy, speed, power, and area from fabricated chips. Because
this aim of this paper is to explore the feasibility and potential
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Fig. 11. Performance of the proposed predictive model. The width of write pulses are (a) 1, (b) 2, (c) 5, and (d) 10 ns. The experiment results are achieved
by statistically analyzing 5000 independent simulation results for each set of parameters.

of RRAM-based analog approximate computing, we mainly
focus on the choice, instead of the design, of AD/DAs.
Extracting necessary parameters from fabricated chips is able
to satisfy the requirement of modeling the RRAM-based
computing system at system level.

Finally, after the RRAM-ACUs are configured properly,
the system can perform approximate computing with high-
power efficiency. However, tuning RRAM devices to tar-
get states is usually time and energy consuming, due to
the large number of RRAM devices in RRAM-ACU and
the random resistance change of RRAM devices. As a
result, the configuration of RRAM-ACU becomes a major
overhead of RRAM-based approximate computing. A fre-
quent configuration will drastically decrease the efficiency of
RRAM-based computing system. The system should oper-
ate continuously without reconfiguration to alleviate this
overhead.

At the system level, the energy efficiency (floating-point
operations per second/J) of the whole system along with
the operating cycles can be calculated through the following
equation:

ηoverall = Econfigure + Eoperate × Cycles

Cycles · Insts
(18)

where ηoverall is the energy efficiency of an RRAM-ACU when
the configuration overhead is estimated. Econfigure is the total
energy consumption cost to program the RRAM-ACU. Eoperate
is the average4 energy cost for each approximate computing
operation. Cycles is the number of operating cycles after the
RRAM-ACU is programmed. Insts represents the number of
x86-64 instructions required to complete the same application
as an RRAM-ACU.

In this model, the upper limit of system energy efficiency
is Eoperate/Insts, and Econfigure will significantly impact the
performance when the system is reconfigured frequently.

B. Predictive Model of RRAM-ACU Configuration Overhead

The overhead of configuring an RRAM-ACU mainly
depends on the efficiency of RRAM state tuning. The esti-
mation of configuration overhead Econfigure requires the steps
of tuning an RRAM device to the target state and the energy

4We can achieve a fine-grained energy consumption with SPICE-based sim-
ulation. But an average energy consumption is enough to evaluate the energy
efficiency along with operating cycles at system level.

consumption of each step.5 For the latter, as RRAM devices
are tuned around LRS of g′mid in (17), we can use the energy
consumed by a tuning pulse applied on g′mid to approximate
the energy consumption of each step. However, it is usually
very hard to predict the tuning steps as the RRAM resistance
change is stochastic as described in Section II-A.

To simplify the estimation of tuning steps,6 we develop
a predictive compact model to calculate the expected tuning
steps efficiently. The relationship between the change of gap
distance (�d) and the expected tuning steps [E(N)] can be
approximated through the following equation:

E(N) =
[

e ξ

ε Tw
·
(

αw√
Tw

�d + βw

)]
(19)

where the gap distance change �d(nm) represents the dif-
ference of RRAM tunneling gap (d) between the target and
initial conductance state. �d can be calculated through (1).
Vw(V) and Tw(ns) are the amplitude and width of RRAM
write pulses, respectively. ε(‰) is the maximum acceptable
deviation of RRAM conductance state. e is the Euler’s num-
ber. αw(∼2000) and βw(∼25) are fitting parameters. ξ is a
parameter influenced by the gap change speed and can be
represented as

ξ ∝ �d

�t
(20)

where �d/�t depends on the device parameters as [18].
ξ ≈ 1, when Vw = −1.2 V and Tw = 1 ns.

Fig. 11 verifies the predictive compact model. The refer-
ence “Exp Data” are simulation data collected by using a
MATLAB-based RRAM device model as [18], [21] to simulate
the stochastic tuning process of RRAM devices. We generate
5000 independent simulation results for each set of parame-
ters. The amplitude of the write pulse is set to −1.2 V and
the read pulse is set to 0.1 V. The initial resistance state is set
to 500 �. The lines in Fig. 11 represent the results calculated

5An RRAM device usually requires an initial forming process to get the
resistance state changeable. The initial forming process is required only once
after the RRAM device is fabricated. In this paper, we assume that all the
RRAM devices are already formed before executing approximate computing
tasks, and we do NOT include the forming process in the predictive model.

6Tuning an RRAM device to the target state can be modeled as a stochastic
process. The accurate probability of successfully tuning an RRAM device
with N steps can be calculated recursively. The detailed derivation process is
provided in the Appendix.
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TABLE II
BENCHMARK DESCRIPTION

TABLE III
DETAILED PARAMETERS OF PERIPHERAL

CIRCUITS IN RRAM-ACU

by the predictive compact model. The points are the refer-
ence data generated by the simulation of RRAM state tuning
process. The predictive compact model fits the Exp Data well.

VI. EVALUATION

To evaluate the performance and efficiency of the proposed
RRAM-based analog approximate computing, we apply our
design to several benchmarks, ranging from the signal process-
ing, gaming, compression to the object recognition. A sensi-
tivity analysis is also performed to evaluate the robustness of
the RRAM-based computing system.

A. Experiment Setup

In the experiment, a Verilog-A RRAM device model
reported in [18] and [21] is used to build up the SPICE-level
crossbar array. We choose the 65 nm technology node to
model the interconnection of the crossbar array and reduce
the IR-drop. The parameters of the interconnection are
calculated with the International Technology Roadmap for
Semiconductors 2013 [35]. The sigmoid circuit is the same
as reported in [30]. The Op Amps, ADCs, and DACs used
for simulation are that reported in [36]–[38], respectively. The
working frequency of each RRAM-ACU is set to 800 MHz.
Detailed parameters of peripheral circuits are summarized in
Table III. Moreover, the maximum amplitude of input voltage
is set to 0.5 V to achieve an approximate linear I–V relation-
ship of RRAM devices. The state tuning scheme described in
Section IV-C is used to program the RRAM-ACU. The ampli-
tude of the write pulse is set to −1.2 V and the read pulse

Fig. 12. Speedup of the RRAM-ACU under different benchmarks.

is set to 0.1 V. The pulse width is set to 5 ns. The maxi-
mum acceptable deviation (ε) of RRAM conductance state is
set to 1% when programming RRAM-ACU. All the simula-
tion results of the RRAM crossbar array are achieved with
HSPICE. And the configuration overhead is estimated with
the predictive compact model introduced in Section V-B.

B. Benchmark Evaluation

Table II summarizes the benchmarks used in the evalua-
tion. The benchmarks are the same as that described in [1],
which are used to test the performance of a x86-64 CPU at
2 GHz equipped with a CMOS-based digital neural process-
ing unit. The “neural network (NN) Topology” term in the
table represents the size of each neural network. For example,
“9× 8× 1” represents a neural approximator with nine nodes
in the input layer, eight nodes in the hidden layer, and one
node in the output layer. The MSE is tested both on CPU
and SPICE-based RRAM-ACU after training. The training
scheme has been described in Section IV-A, which is mod-
ified for RRAM-ACU. The size of the crossbar array in the
RRAM-ACU is set to 64 × 64 to satisfy all the benchmarks.
The unused RRAM devices in the crossbar array are set to the
highest resistance states to minimize the sneak path problem.
And the unused input and output ports are connected to the
ground.

The simulation results are illustrated in Figs. 12 and 13.
Compared with the x86-64 CPU at 2 GHz, the RRAM-ACU
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Fig. 13. Power efficiency of the RRAM-ACU under different benchmarks.

Fig. 14. RRAM-ACU power consumption breakdowns.

achieves 567.98 GFLOPS/W power efficiency and 196.41×
speedup at most. And for the whole set of selected diverse
benchmarks, the RRAM-ACU provides 249.14 GFLOPS/W
and speedup of 67.29× with quality loss of 8.72% on average.
The improvement of processing speed mainly depends on the
capability of the neural approximator. As the RRAM-ACU is
able to transfer a set of instructions into a neural approximator
and execute them with only one cycle, the speedup achieved
by an RRAM-ACU increases linearly with the number of
instructions the neural approximator represents. For example,
the “Jmeint” and “Joint Photographic Experts Group (JPEG)”
benchmarks achieve >150× speedup as their neural approxi-
mators successfully implement the complex tasks that require
more than a thousand instructions in traditional x86-64 archi-
tectures. In contrast, the “K-Means” and “fast fourier trans-
form (FFT)” benchmarks achieve the least speedup (∼10×)
because of the simplicity of tasks. And for the improvement of
power efficiency, although the RRAM-ACU for a complex task
is able to achieve more speedups, a bigger neural approximator
may be also demanded to accomplish more power-consuming
tasks. However, as the NN topology increases slower than the
instruction number in the experiment, the complex tasks still
achieve better power efficiency.

Fig. 14 illustrates the power consumption breakdowns of
RRAM-ACUs. The sigmoid circuit is power efficient as there
are only six MOSFETs used in the circuit [30]. The power
consumption of sigmoid circuit mainly depends on the output
voltage. For example, most outputs will be close to zero after
the JPEG encoding. And therefore, the sigmoid circuit takes a
negligible part of power consumption in the JPEG benchmark.
In contrast, the outputs of sigmoid circuits in the “Inversek2j”

Fig. 15. Energy efficiency of RRAM-ACU along with the operating time
when configuration overhead is considered.

and K-Means are much larger and the power consumption
increases as a result. Compared with the sigmoid circuit,
most of the power is consumed by Op Amps and AD/DAs.
RRAM devices only take 10%–20% of the total energy con-
sumption in RRAM-ACU, and the ratio increases with the NN
topology. Therefore, how to reduce the energy consumed by
peripheral circuits may be a challenge to further improve the
efficiency of RRAM-based analog approximate computing.

Finally, Fig. 15 illustrates the energy efficiency of
RRAM-ACU along with the operating time when the con-
figuration overhead is considered. The energy efficiency of
the whole system is calculated through the following equa-
tion according to (18). It can be seen that the RRAM-ACU
should keep operating for a period of time to reduce the impact
of configuration overhead and increase the energy efficiency.
The configuration overhead increases with the size of neural
approximator. For the benchmarks with a small NN topology,
e.g., “Sobel” and FFT, the configuration overhead is small.
Only ∼103 cycles (@800 MHz) are needed to reach a good
performance. However, for the complex tasks, more operation
cycles (∼105) are required to achieve better energy efficiency.

In Section VII, the simulation results demonstrate the effi-
ciency of RRAM-ACU as well as the feasibility of a dynamic
reconfiguration. And there is a tradeoff among the task com-
plexity, power efficiency, and configuration overhead: the more
difficult the task, the better power efficiency an RRAM-ACU
can achieve, but the more operating cycles are required to hide
the larger configuration overhead.

C. System Level Evaluation: HMAX

In order to evaluate the performance of RRAM-ACU at
system level, we conduct a case study on HMAX appli-
cation. HMAX is a famous bio-inspired model for general
object recognition in complex environment [39]. The model
consumes more than 95% amount of computation to per-
form pattern matching in S2 Layer by calculating the distance
between the prototypes and units [13], [39]. The amount of
computation is too huge to realize real-time video process-
ing on conventional CPUs while the computation accuracy
requirement is not strict [40]. In this section evaluation,
we apply the proposed RRAM-based approximate computing
framework to conduct the distance calculations to promote the
data processing efficiency.
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Fig. 16. Performance of RRAM-based HMAX under different noise con-
ditions, where “device variation” represents device variation and “signal
fluctuation” represents input signal fluctuation.

We use 1000 images (350 of cars and 650 of the other
categories) from PASCAL Challenge 2011 database [41] to
evaluate the performance of the HMAX system on the digital
and the RRAM-based approximated computation framework.
Each image is of 320× 240 pixels with complex background.
The HMAX model contains 500 patterns of car images which
remain the same on each platform. A correct result indicates
both right judgment on the classification of the object and
successful detection on the object location.

The RRAM approximate commuting framework illustrated
in Fig. 2 is used to support the HMAX approximate.
Each RRAM PE consists of four six-input RRAM-ACU for
Gaussian calculations and one for four-input multiplication.
Therefore, each RRAM PE can realize a 24-input distance
calculation per clock cycle [13].

The results of correct rate are shown in Fig. 16. The
performance of RRAM-based approximate computing under
different noise conditions is also considered. The device vari-
ation represents the deviation of the RRAM conductance state
and the signal fluctuation represents the deviation of the input
signals. As we can observe, the correct rate degradation is only
2.4% on the ideal RRAM-based approximate computing with
respect to the CPU platform. This degradation can be easily
compensated by increasing the amount of patterns [39].

Moreover, when taking the noise into consideration, the
device variation will significantly impact the recognition accu-
racy. As the performance of neural approximator mainly
depends on the RRAM conductance states, the device vari-
ation will significantly impact the computation quality and
make the recognition accuracy decrease a lot. For example,
a 10% device variation can result in a >50% decrease of the
recognition accuracy. Therefore, the device variation should
be suppressed to satisfy the application requiring high accu-
racy. Compared with the device variation, the impact of signal
fluctuation is much less, which demonstrates that we may use
DACs with less precision but less power consumption, in the
RRAM-ACU to further improve the power efficiency of the
whole system.

The power efficiency evaluation of the RRAM-based
HMAX accelerator is given in Table IV. The detailed com-
parisons with other platforms are given in Table V. The
parameters of the HMAX model as well as the evaluation

TABLE IV
POWER EFFICIENCY OF THE RRAM-BASED HMAX

TABLE V
POWER EFFICIENCY COMPARISON WITH DIFFERENT

PLATFORMS (FPGA, GPU, CPUS IN [40])

image dataset are different among different platforms. It is
hard to compare the recognition accuracy of different imple-
mentations. However, we can still compare the efficiency of
different platforms through the unified power consumption per
frame. The simulation results show that the power efficiency of
RRAM-based approximated computation framework is higher
than 300 GFLOPS/W. And compared to other platforms like
FPGA, GPU, and CPU [40], RRAM-based HMAX achieves
a performance up to 6.214 frames/s/W, which is 12.8–270.2×
higher than its digital counterparts.

VII. CONCLUSION

In this paper, we propose a power efficient approximate
computing framework with the emerging RRAM technology.
We first introduce an RRAM-based approximate computing
framework by integrating our programmable RRAM-ACU. We
also introduce a complete configuration flow to program the
RRAM-based computing hardware efficiently. Finally, the pro-
posed RRAM-based computing system is modeled at system
level, and a predictive compact model is developed to esti-
mate the configuration overhead and explore the application
scenarios of RRAM-based analog approximate computing.

Besides exploring the potential of RRAM-based approxi-
mate computing, this paper still faces many challenges. For
example, the IR-drop caused by the interconnect resistance
influences the RRAM computation quality and severely lim-
its the scale of the crossbar system [25]. IR-drop reduction
or compensation techniques are demanded to support applica-
tions, such as the deep learning, which require a large crossbar
size. Besides, many RRAM specific issues, such as the impact
of temperature on the resistive switching behavior and I–V
relationship, should be also considered to enhance the system
reliability in future work [42].

APPENDIX

The probability of successfully tuning an RRAM device to
the target resistance range with N steps can be calculated by
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the following expansion:

P(Step = N) =
N−2∑
i=1

Pr(i) · Ps(N − i− 1|Initial)+ Ps(N|Initial)

(21)

where Pr(n) represents that the state tuning scheme detects
that the RRAM device misses the required range at the nth
step and reset it at the n + 1th step. Ps(n|Initial) represents
that the RRAM device is successfully tuned to the required
range with n steps without initialization.

According to [18], the tunneling gap change caused by a
voltage pulse follows a Gaussian distribution, whose mean
depends on the previous gap (d) of the RRAM devices. As the
RRAM-ACU mainly takes advantage of the LRS of RRAM
devices, d is usually very small (0.2–0.5 nm). We can assume
that tunneling gap change caused by each voltage pulse is
approximately independent identically distributed and follows
the same Gaussian distribution. Because the summation of a
series of independent Gaussian distributions is still a Gaussian
distribution, Ps(n|Initial) can be represented as follows:

Ps(n|Initial) =
∫ D+ε

D−ε

N
(

x|nμ, nσ 2
)

dx (22)

where N(x|μ, σ 2) is the Gaussian probability density function
that represents the tunneling gap change caused by one voltage
pulse. D is the distance between the target and initial tunneling
gap. ε is the maximum absolute deviation of resistance state.

For the other part, Pr(n) can be calculated recursively as

Pr(n) =
n−2∑
i=1

Pr(i) · Pm(n− i− 1|Initial)+ Pm(n) (23)

where Pm(n|Initial) represents the probability that the RRAM
device misses the required resistance with m steps after
initialization. Pm(n|Initial) can be expressed as

Pm(n|Initial) =
∫ +∞

D+ε

N
(

x|nμ, nσ 2
)

dx. (24)

Finally, by combining (21)–(23), the detailed probability of
tuning an RRAM device with N steps can be achieved.
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