
MEDAL: Scalable DIMM based Near Data Processing Accelerator
for DNA Seeding Algorithm

Wenqin Huangfu1, Xueqi Li1,3, Shuangchen Li1,2, Xing Hu1, Peng Gu1, Yuan Xie1,2
1University of California, Santa Barbara 2DAMO Academy, Alibaba Group Inc.

3Institute of Computing Technology, Chinese Academy of Sciences
{wenqin_huangfu,shuangchenli,yuanxie}@ece.ucsb.edu

ABSTRACT

Computational genomics has proven its great potential to support

precise and customized health care. However, with the wide adop-

tion of the Next Generation Sequencing (NGS) technology, ‘DNA

Alignment’, as the crucial step in computational genomics, is be-

coming more and more challenging due to the booming bio-data.

Consequently, various hardware approaches have been explored to

accelerate DNA seeding - the core and most time consuming step

in DNA alignment.

Most previous hardware approaches leverage multi-core, GPU,

and FPGA to accelerate DNA seeding. However, DNA seeding is

bounded by memory and above hardware approaches focus on com-

putation. For this reason, Near Data Processing (NDP) is a better

solution for DNA seeding. Unfortunately, existing NDP accelerators

for DNA seeding face two grand challenges, i.e., fine-grained ran-

dom memory access and scalability demand for booming bio-data.

To address those challenges, we propose a practical, energy efficient,

Dual-Inline Memory Module (DIMM) based, NDP Accelerator for

DNA Seeding Algorithm (MEDAL), which is based on off-the-shelf

DRAM components. For small databases that can be fitted within

a single DRAM rank, we propose the intra-rank design, together

with an algorithm-specific address mapping, bandwidth-aware data

mapping, and Individual Chip Select (ICS) to address the challenge

of fine-grained random memory access, improving parallelism and

bandwidth utilization. Furthermore, to tackle the challenge of scal-

ability for large databases, we propose three inter-rank designs

(polling-based communication, interrupt-based communication,

and Non-Volatile DIMM (NVDIMM)-based solution). In addition,

we propose an algorithm-specific data compression technique to

reduce memory footprint, introduce more space for the data map-

ping, and reduce the communication overhead. Experimental re-

sults show that for three proposed designs, on average, MEDAL can

achieve 30.50x/8.37x/3.43x speedup and 289.91x/6.47x/2.89x energy

reduction when compared with a 16-thread CPU baseline and two

state-of-the-art NDP accelerators, respectively.

ACM Reference Format:

Wenqin Huangfu1, Xueqi Li1,3, Shuangchen Li1,2, Xing Hu1, Peng Gu1,

Yuan Xie1,2 . 2019. MEDAL: Scalable DIMM based Near Data Processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO’19, October 12-16, 2019, Columbus, OH, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358329

Accelerator for DNA Seeding Algorithm. In Proceedings of The 52nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’19). ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3352460.3358329

1 INTRODUCTION

DNA seeding, as the bottleneck stage in computational genomics,

has drawn tremendous attention [3, 9]. Computational genomics is

developing rapidly and is well motivated by its potential adoption

to the precise and customized medical care, such as helping physi-

cians to select a particular drug or treatment suitable for a specific

pathology of a cancer [10]. With the higher throughput and cost ef-

ficiency of the Next Generation Sequencing (NGS) technology [26],

bio-data is booming, leading to severe stress on genomics analysis

due to more data but a shorter time budget. DNA alignment, which

aligns short reads, i.e., DNA subsequences, to reference genomes to

locate positions of the short reads, is commonly considered as the

core and one of the most time-consuming steps in genomics analy-

sis [9]. DNA alignment contains two major time-consuming steps,

i.e., DNA Seeding and Seed Extension. DNA Seeding generates ex-

act matches, i.e., seeds, between the short reads and the reference

genomes, and Seed Extension extends the seeds to longer matches

with gaps allowed. DNA seeding and seed extension equally domi-

nate the end-to-end computing of DNA alignment, thus they are

both worth being accelerated [3, 9, 20].

The importance of DNA seeding motivates plenty of researches

to accelerate it. Various compute-centric hardware approaches,

such as multi-core [56], GPU [38, 40], and FPGA [9, 14] have been

explored to accelerate DNA seeding. However, innovations that

only focus on the computation have limited space for improvement,

since DNA seeding is memory bound [3, 9]. DNA seeding intro-

duces huge amount of random data movement [56], resulting in

bottlenecks of both performance and energy [21, 28]. Near Data

Processing (NDP) architecture emerges as a better acceleration

solution for DNA seeding by addressing the issue of data move-

ment [37]. Such architecture integrates computation and memory

closely to embrace the larger internal memory bandwidth and re-

duce the overhead of data movement. For example, MPU-BWM [55]

accelerates DNA seeding with a RISC-V core in the logic die of a

HMC. Chameleon [6] and AIM [10] providemore practical solutions

by leveraging the Dual-Inline Memory Module (DIMM) to build

accelerators, with off-the-shelf commodity DRAM components.

However, existing NDP accelerators for DNA seeding face two

grand challenges. The first challenge is the fine-grained random

memory access. The randomness stresses memory bandwidth

due to the bank/channel conflict and the fine-granularity results

in low bandwidth utilization. For example, in BWA-MEM [34] -

the most widely used software tool for DNA alignment - only 32

587

MICRO’19, October 12-16, 2019, Columbus, OH, USA Huangfu, et al.

Bytes data is useful on average for each 64 Bytes cacheline from

one memory access [35]. In addition, the inter-task divergence in

memory access makes the application difficult to run efficiently on

a SIMD-based hardware. Previous work Chameleon [6] is a general

purpose SIMD NDP accelerator. As a result, it fails to tackle this

challenge of fine-grained random memory access and shows sub-

optimal performance on DNA seeding even if a communication

mechanism is added. The second challenge is the demand for scal-

ability due to the exploding DNA data. Biological data has been

growing exponentially [26]. For example, data in Whole Genome

Shotgun(WGS) project [17] of the National Center for Biotechnol-

ogy Information (NCBI) have doubled the size approximately every

18 months and now the WGS project contains more than 3.44 tril-

lion bases. The rapidly, ever-increasing data demand scalability.

Previous work AIM [10] proposes to accelerate DNA seeding with

DRAM by linking customized FPGA accelerators and dedicated data

buses to DIMMs. However, because there is no rank-level paral-

lelism within AIM and AIM accesses memory in coarse-granularity

(64 Bytes), potential memory bandwidth is not fully utilized. For

Chameleon [6], its bandwidth utilization ratio is very low (about

10% in our experiments), although leveraging rank-level parallelism

is one of its design purposes, simply due to the inter-task divergence

in DNA seeding and Chameleon’s SIMD-style processing.

The goal of this paper is to build a NDP accelerator for DNA

seeding with fine-grained memory accessibility, high bandwidth

utilization, and scalability. We propose an accelerator, i.e., MEDAL,

on DIMM between DRAM components and the standard data bus.

MEDAL highlights practicability by using off-the-shelf DRAM com-

ponents and the standard DDR protocol. MEDAL leverages both

the rank-level and the fine-grained, chip-level memory bandwidth.

Within a rank, we propose three techniques to address the chal-

lenge of fine-grained randommemory access, improving parallelism

as well as bandwidth utilization. The proposed methods take advan-

tages of our in-depth characterization of the target DNA seeding

algorithm. The first technique is the algorithm-specific address

mapping, which maps the continuous data together in a single

DRAM chip to improve locality, provides potential for chip-level

parallelism and fine-grained memory access, and reduces commu-

nication, instead of interleaving data across multiple chips. The

second technique is the bandwidth-aware data mapping. It du-

plicates or remaps data across all available chips to fully utilizes

potential memory bandwidth. The third technique is the Individual

Chip Selection (ICS), which leverages the Chip Selection (CS) signal

to support chip-level parallelism and fine-grained memory access,

further improving the bandwidth efficiency.

Across ranks, when the index data cannot be fit into one rank, we

then propose three design options to address the multi-rank scaling

out issue caused by the exploding data challenge. The proposed

methods highlight the practicability for scaling out. The first, also

the basic, design leverages CPU polling for inter-rank communi-

cation. Compared with the first design option, our second design,

i.e., interrupt-based design, doesn’t need to occupy the host and

memory bus for polling operations. The Reserved for Future Use

(RFU) pin in DDR is used for triggering interupts. The third design

alternatively introduces the NVDIMM-P, in which we store the

large DNA index within the dense Non-Volatile Memory (NVM) to

reduce/eliminate inter-rank communication. In addition, we pro-

pose an algorithm-specific data compression technique to reduce

memory footprint, introduce more space for data mapping to utilize,

and reduce communication overhead. Our specific contributions

are listed as follows.

• We propose a practical and energy-efficient NDP accelerator

architecture, i.e., MEDAL, for DNA seeding with off-the-shelf

DRAM components.

• For the intra-rank design, we propose three application-specific

techniques (algorithm-specific addressmapping, bandwidth-aware

data mapping, and ICS) to address the challenge of fine-grained

random memory access and improve parallelism as well as band-

width utilization.

• For the inter-rank design, we propose three alternative approaches

(polling-based communication, interrupt-based communication,

and NVDIMM-based solution) to overcome the challenge of big

data and system scaling.

• In addition, we propose an algorithm-specific data compression

technique to reduce memory footprint, introduce more space for

data mapping to utilize, and reduce communication overhead,

leading to performance improvement.

• Our experimental evaluation shows that MEDAL can provide

30.50x/8.37x/3.43x better performance and 289.91x/6.47x/2.89x

better energy-efficiency than a 16-thread CPU baseline and two

state-of-the-art NDP accelerators, respectively.

2 BACKGROUND

This section introduces the basics of DNA seeding algorithm and

the buffered DIMM.

All Rotations

B :CT$AGACR

Reference Sequence:AGCTAC$

AGCTAC$
GCTAC$A
CTAC$AG
TAC$AGC
AC$AGCT
C$AGCTA
$AGCTAC

Sorted Rotations
$AGCTA C

AGCTAC $
C$AGCT A
CTAC$A G
GCTAC$ A

AC$AGC T

TAC$AG C

0

A
C
G
T

0 1 2 3 4C T $ A G

0
0
0 0

1
0
0 1

0
1
0

1
0
1
0

1
0
1
1

5A

1
1
1
1

6C

1
1
1
2

7

1
1
2
2SR 6

4
0

1
2

3

5

B :CT$AGACR

RO

A C G T
1 3 5 6RC :

Sorted B : $AACCGTR

…...

Figure 1: An example of data structures in FM-index based

DNA seeding.

DNA Seeding Algorithm: DNA seeding refers to the process of

matching seeds (small sequence fragments chopped from a given

read) back to the long reference genome. DNA seeding algorithms

usually pre-build an index of the reference genome to speedup the

locating. FM-index [32, 34] and Hash-index [2] are two mainstream

seeding indexes used by modern DNA aligners. Both of the algo-

rithms are preferable, depending on the combination of the seeding

and the extension approach [2]. For example, FM-index based algo-

rithm has good performance for local alignment and BLAST-like

seed extension [2]. Different from the Hash-index based algorithm,

FM-index based algorithm suffers from more irregular memory

access and longer data reuse distance, and hence is more challeng-

ing. Therefore, our main target is to accelerate FM-index based

588

MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm MICRO’19, October 12-16, 2019, Columbus, OH, USA

algorithm. For generality, we keep the design compatible for the

Hash-index based algorithm, and evaluate both of them.

The flow of the FM-index based seeding algorithm contains the

offline preprocessing (index building) and the online searching.

During the preprocessing, the following data for the reference

genome R are calculated and prepared.

• BR [len]: the Burrows-Wheeler Transform [9] of R (BR);
• SR [len]: the Suffix Array (SA), i.e., record the original id of sorted

rotations before sorting;

• CR [4]: the accumulative count array, i.e., the index of the first

appearance of A,T ,C,G in sorted BR ;
• OR [len + 1][4]: the occurrence array, i.e., the occurrences of each

nucleotide (A,T ,C,G) before the ith symbol of BR ;

An example is shown in Fig. 1, the reference sequence is AGCTAC .
The algorithm first terminates the reference sequence with a unique

character $. Then, all rotations of above character string are gen-

erated. Next, those rotations are sorted in alphabet order. The last

characters of all entries in above sorted rotations form BR [len].
SR [len] is also derived during this process. Finally, with BR [len]
and sorted BR [len], OR [len + 1][4] and CR [4] can be generated.

Algorithm 1: FM-index based Seeding Algorithm

Input: Query sequence SD[d], Reference genome R[len]

Output:Matching locations

1 Preprocess: Derive BR [len], SR [len], CR [4], and OR [len + 1][4];

2 while I lower <= Iupper do

3 x ← SD .дetchar ();

4 if x = EoF then break;

5 I lower = CT [x] +OT [x][I
lower − 1];

6 Iupper = CT [x] +OT [x][I
upper];

7 end

8 for I lower <= i <= Iupper do

9 Match location[i] = SR [i];

10 end

11 return Match location;

During the searching, the algorithm extends current match by

one nucleotide each iteration, reading CR and OR to locate the

range of matches until no match can be found. Algorithm 1 shows

the searching flow. I lower and Iupper represent the first and the

last index of the suffix sequence with current prefix of SD in SR .
This range contains all occurrences of current prefix of SD in R.

I l (D) ≤ Iu (D) if and only there is at least one match in R.

Buffered Dual-Inline Memory Module: Dual-Inline Memory

Module (DIMM) is a widely used memory package with 64 data

(DQ) pins. In a DIMM, multiple DRAM chips form a rank, and one or

more ranks are packaged together to form a DIMM. Load-Reduced

DIMM (LRDIMM), as shown in Fig. 5(b), is introduced to address the

signal integrity issue for high frequency memory interface. The key

component in LRDIMM is the Memory Buffer (MB) that enhances

the C/A and DQ signals. The MB is divided into two pieces:

• Registering Clock Driver (RCD): One per DIMM to buffer and

repeat C/A signals.

• Data Buffer (DB): One for a set of (e.g., 2/4/8) DRAM chips to

improve the signal integrity of DQ signals.

3 MOTIVATIONS AND CHALLENGES

We first justify the selection of our target application, i.e., DNA seed-

ing, for two reasons. First, DNA seeding dominates the computation-

expensive DNA alignment in BWA-MEM [34] - the most widely

used tool for DNA alignment, which contains both DNA seeding

and seed extension. Previous work [9] has shown that DNA seed-

ing is the most time-consuming step in DNA alignment and takes

29.35% of the runtime, whereas the seed extension takes the second

most time at 27.89%. Furthermore, our evaluation shows that in

the scenario of metagenomics (aligning sequences from unknown

species to huge reference databases), DNA seeding takes up to 48%

of the runtime, because of the less presence of the extension part due

to the lower hit rate during the seeding. Second, seed extension is

computing-bound [3] and has been extensively studied [19, 36, 39].

ASIC/GPU/FPGA [19, 36, 39] has shown up to 652x speedup, com-

pared to the CPU baseline. With those advanced accelerators for

seed extension already developed, the memory-bound DNA seeding

becomes the outstanding bottleneck.

14.9% 4.8% 8.1% 5.0% 49.4%6.5%

0% 20% 40% 60% 80% 100%

(c
) E

ne
rg

y core ifetch int fp ls other
icache dcache l2 dram other

core cache DRAM

48.0% 7.9% 29.7% 13.6%

(b
) I

ns
tr

s. int fp branch branch_mis load store

Load/Store Instructions

4.9%9.7% 8.5% 15.3% 60.1%

(a
) C

PI
 S

ta
ck base rs_full branch mem-l1d mem-l3 mem-dram other

core cache DRAM

Figure 2: Profiling the DNA seeding in BWA-MEM [34] with

Sniper [7] and configuration in Table 1: (a) CPI stack; (b) In-

struction statistics; (c) Energy breakdown.

Memory system is the bottleneck [3, 9, 20] of DNA seeding,

motivating our key idea of adopting the NDP architecture. Profiling

results in Fig. 2 quantitatively show the bottleneck. As Fig. 2 (a)

shows, the DRAM access accounts for 60% in the CPI stack analysis;

The Load/Store instructions take 43.4% among total instructions in

Fig. 2 (b); The energy breakdown in Fig. 2 (c) shows that 49.4% of

the total energy consumption is consumed by the DRAM.

While designing NDP architecture for the DNA seeding applica-

tion is well motivated, it faces two grand challenges.

0%
2%
4%
6%
8%

10%
12%

0.
0

2.
5

5.
5

8.
5

11
.6

14
.6

17
.7

20
.7

23
.7

26
.8

29
.8

32
.8

35
.9

38
.9

42
.0

45
.0

48
.0

51
.1

54
.1

57
.1

60
.2

63
.2

66
.2

69
.3

72
.3

75
93
.2

Execution Time (us)

3% are longer than 74us
and up to 7.6ms (100x)

90% spread over
2.5us to 42us (16x)

Figure 3: Execution time distribution of the seeding’s ele-

mental task (bwt_smem1a [34], the atomic function for par-

allel DNA seeding).

Challenge-1 Fine-GrainedRandomness andDivergence:This

challenge leads to the memory bandwidth under-utilization and

workload imbalance with the SIMD architecture. The memory ac-

cess pattern of FM-index based DNA seeding is random and fine-

grained. We profile the Last-Level Cache (LLC) miss rate for the

589

MICRO’19, October 12-16, 2019, Columbus, OH, USA Huangfu, et al.

seeding’s elemental task, showing 32.5% on average and up to

93.24% peak miss rate. Fine-granularity of memory access is due

to the reason that the actual data needed in each iteration are

only 4 integers of OR , while 512 bits are fetched from the memory.

The challenge of this fine-grained random memory access pattern

results in two problems: First, the inevitable demands for larger

memory bandwidth; Second, the low bandwidth utilization. For

each 64B memory access to get OR (x , i), on average only 50% of

the cacheline is actually used [34, 35].

Furthermore, the behaviors of individual seeding tasks are di-

vergent. The profiling results in Fig. 3 show that the majority of

the elemental seeding task (90%) spreads from 2.5μs to 42μs (16×
difference) with a long tail effect that 3% of the tasks run longer

than 74μs (up to 7.6ms).

(a) (b)

1.0E+00

1.0E+02

1.0E+04

1.0E+06

01 03 05 07 09 11 13 15 17C
os

t /
 B

ill
io

n
B

as
es

Year

Sequencing Cost

Cost
Moore's Law 1.0E+11

1.1E+12

2.1E+12

3.1E+12

4.1E+12

12 13 14 15 16 17 18

B
io

-B
as

es

Year

Bio-Data
WGS Data
Moore's Law

Figure 4: (a) Reduction of sequencing cost [22]. (b) Boom of

the bio-data [17].

Challenge-2 BigData: The bio-data has shown even faster growth

than the Moore’s law. Fig. 4(a) shows that the cost of sequencing

genomes reduces much faster than Moore’s law, indicating that

larger databases for more species are becoming practical and afford-

able [22]. Fig. 4(b) shows that bio-data grows exponentially. The

speed of the data growth is also faster than the Moore’s law. Cur-

rently, it takes ~6.75 GPU hours [45] for seeding on human genome1.

For larger genome library (e.g., Ambystoma Mexicanum [42] is 10x

bigger than the human’s), the seeding time scales super linear. The

challenge of the big data demands scaling out, since the capacity of

DRAM in one node is limited. The communication overhead, e.g.,

Non-Uniform Memory Access (NUMA), Remote Direct Memory

Access (RDMA), further stresses the memory system. In addition,

our profiling results show that the searching performance degrades

3.4×, if the average memory latency doubles.

4 MEDAL ARCHITECTURE

In this section, we introduce the MEDAL architecture. After an

overview of the architecture, we describe the working flow and

techniques for intra and inter rank scenarios.

4.1 Architecture Overview

The goal of MEDAL is to leverage NDP architecture for exploiting

extra bandwidth for DNA seeding, while remaining practical by

using off-the-shelf host processors and DRAM components. To this

end, MEDAL exploits extra bandwidth and parallelism inside per

channel for DIMM-based memory systems, while it only conducts

modifications to the DIMM printed circuit board (PCB) design. Such

design simultaneously activates the DRAM in different ranks. As-

suming a typical memory system in Table 1, compared with the

conventional case where only ranks in different channels can be ac-

cessed in parallel, MEDAL exploits 12×more bandwidth. Compared

150× coverage, 76bp reads, with the reference library of human genome, on a Tesla
K80 GPU.

with NDP previous work [10] that only exploits DIMM-level paral-

lelism instead of rank-level parallelism, MEDAL exploits 4× more

bandwidth. Furthermore, MEDAL even leverages the chip-level

parallelism within the same rank via decoupling their CS signals.

Specifically,MEDAL is built bymodifying the commercial LRDIMM,

as shown in Fig. 5(a) and (b). Five components below are added.

DB-Side Accelerator:We attach 4 DNA seeding specific hardware

accelerators to each DB in the LRDIMM, as shown in Fig. 5 (c)

and (d). The DB-side accelerator inputs/outputs data with the FIFO

connected to the inter-chip hierarchical data bus, and sends a pair of

current accelerator ID and its read/write request to the FIFO, which

connects to the inter-chip hierarchical ID/address bus. To perform

the task described in Algorithm 1, the accelerator contains

• registers to store the query sequence q,
• a 4×64-bit register file to store CR [4],
• a data reorganization engine to calculate OR [x] from its stored

data structure,

• two 64-bit unsigned adders to update Iuppper and I lower ,

• an address translation engine to convert the virtual address to

DRAM device address (see Section 4.2 for detail).

DB-Side Multiplexer: We add a multiplexer to the output of DB,

so that in addition to sending data to the DDR bus, DB can also send

data to the inter-chip hierarchical data bus through the DB-side

FIFO. The multiplexer is controlled by a dedicated enable signal

from RCD-side MC.

RCD-Side Memory Controller (MC): The DB-side accelerator

creates a new challenge. Since both the host and the accelerators

can access the DRAM and the host is not aware of the requests

issued by the accelerators. Requests from the two sides will conflict

if they are not well coordinated.

Our design philosophy is to enable the RCD to coordinate those

memory requests, since the RCD has the information of memory

requests from both the host and the accelerators. We modify the

RCD in the original LRDIMM, design the RCD-side MC, as shown in

Fig. 5 (c), and propose a host-prioritized request scheduling (details

in Section 4.3), to address this issue. The original RCD only serves

as an enhancement module for the C/A signals. In MEDAL, the

following modifications and new components are added.

• The C/A signal from the host is detoured to the RCD-side MC

before going to the DRAM components.

• A MC, which merges and schedules the requests from both the

host and the DB-side accelerators, is added with a request queue

and a scheduling engine. The scheduler will prioritize the host-

side requests. This is because host-side MC is not aware of the

accelerator-side requests, so the host memory accesses must

be served soon to meet the expectation of the host (details in

Section 4.3). For other accelerator requests, it applies the first-

ready first-come-first-serve scheme. The scheduler also makes

sure DRAM timing constraints are met, and helps the following

controllers to generate C/S and enable signal on right time.

• A controller to generate dedicated CS signals to each DB accord-

ing to timing information from the MC scheduler, instead of

one global CS bus. Details of the chip selection optimization is

introduced in Section 4.2.

• A controller to generate enable signal for the FIFO in the DB-side

multiplexer. Since data accessed by the accelerator is transferred

590

MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm MICRO’19, October 12-16, 2019, Columbus, OH, USA

Mem CtrL
Buffer

Arbiter

Original
RCD

C/A

CPU

…...

…
...

…...

CH 4

C
H

 3 CH 2

LR
D

IM
M …

...

LR
D

IM
M

MEDAL

M
em

 C
trL

C
H

 1

Mem CtrL

M
em

 C
trL

Mem CtrL

LRDIMM

Rank 2

RCDX4 X4 X4 X4

DB DB

Rank 4
Rank 1

RanksDRAM Chips

…
...

…
...

Connections

DB Original DB

FM-Index

Results
Queries

FM-Index

Results
Queries

MUXen

Host C/A CS CS

CR

C
trL

Data
Bus

Data
Bus

Data
Bus

+
Comp

MUX
Adr

Trans
C/A
Bus

C/A

C/A C/A

Acc Zoom-in
q

OR SR

(a) (b) (c) (d)

RCD

CtrL

ACC ACC
ACC ACC

Figure 5: (a) High-level architecture of MEDAL. (b) Architecture of LRDIMM. (c) Micro-architecture of DB. Lightweight, cus-

tomized logics are inserted within it. (d) Connections between RCD, DB, and DRAM chips.

to the data bus, the enable signal makes sure the FIFO catch and

buffer the data when the bus is not ready for data transfer.

Inter-Chip Hierarchical Bus: Another design challenge is that,

with proposed algorithm-specific data mapping discussed in Section

4.2, the OR [x][i] is spread over all DRAM components across the

rank. The distributed data mean the DB-side accelerator may need

the data from other DRAM components in this rank. However, there

is no connection between different DRAM components within a

rank in the vanilla DIMM, forbidding inter-chip communication.

To address this challenge, we design the inter-chip hierarchi-

cal bus. Specifically, we have the ID/address bus and the data bus.

The ID/address bus transfers the pair of the accelerator ID and its

memory requests from the accelerator to the RCD-side MC. Ac-

celerators are masters writing the data (i.e., ID/addresses) to the

only slave (i.e., the RCD-side MC). The data bus transfers the data

from a DB belonging to a group of DRAM components to its des-

tination accelerator. The FIFOs in the DB-side multiplexer are the

masters writing the data (i.e., DRAM data) to the slaves (accelera-

tors). Both of the buses are multi-master single-channel buses. The

bus is simplified from standard bus like AMBA [5], and it contains

(1) a shared clock signal and reset signal for both buses, (2) 1-bit

dedicated master/slave selection signal for each master/slave, (3)

8-bit write data signals for the ID/address bus, 64-bit bi-direction

data signals for the data bus, (4) burst length 5 for the ID/address

bus to transfer 8-bit accelerator ID and 32-bit address, burst length

8 for the data bus. Bus address signals are eliminated since the RCD-

side arbitrator, which is introduced in detail below, has already

been aware of the source and destination module of every transfer

though the RCD-side MC, and can simply assign the bus using the

master/slave selection signals.

Note that we make the such a design choice under the consider-

ation of minimizing the wiring complexity on PCB. The simplified

single-channel buses conduct (4 · n + 75) extra wires, where n rep-

resents the number of DBs per DIMM.

RCD-Side Bus Arbitrator: The arbitrator assigns the bus to the

masters sharing the bus. For the C/A bus, the arbitrator applies

first-come-first-server scheme to grant the bus for each accelerator,

so that all of them can send their memory request to the RCD-side

MC. For the data bus, the arbitrator sets a pair of the master/slave

selection signal so that DRAM data can be transferred from a DB-

side multiplexer to an accelerator. The arbitrator works with the

aid of the RCD-side MC. Since accelerators send their ID and read

request to the MC, the MC can provide (1) when the data will be

ready from which DRAM and (2) which accelerator requests this

data. With above information, the arbitrator then picks a pair of

master and slave for data transfer after the data is ready.

The rest of this section describes the detailed data flow onMEDAL.

First, we will show the simpler case when the memory footprint is

small enough to be fit in one rank, focusing on intra-rank optimiza-

tions to address the Fine-GrainedRandomness andDivergence

challenge. Then, we describe the general case when the memory

footprint is large and inter-rank communication is required, focus-

ing on techniques to address the Big Data challenge.

4.2 Intra-Rank Workflow and Optimizations

In this subsection, after a detailed description of the architecture and

control flow, we address the Fine-Grained Randomness and Di-

vergence challenge by proposing algorithm-specific data mapping,

bandwidth-aware data mapping, and the Individual Chip Selection

(ICS). Note that we start with the simple case when the data can

be fitted in a single rank to provide a better focus on addressing

the challenge. However, these techniques are applicable for larger

databases as well.

Working Flow:We go through the working flow of MEDAL. Be-

fore execution, the genome data are stored in DRAM with the

address mapping and data mapping to be introduced later. To get

started, the host sends a DDR command of writing a reservedDRAM

mode register. The RCD-side MC catches this command and broad-

casts it to every DB-side accelerator by resetting the reset signal in

the inter-chip data bus. To reads OR and SR from the DRAM, each

DB-side accelerator first sends the read request to the RCD-side

MC through the inter-chip ID/address bus. After scheduling, the

MC sends the C/A signals to the DRAM component through the

original C/A bus, and informs the DB-side accelerator to get ready

via the selection signal in the inter-chip data bus. Finally the DB-

side accelerator receives the data through the inter-chip data bus.

The accelerators keep iterating till the end of search.

We propose an algorithm-specific address mapping to improve

data locality and provide potential for chip-level parallelism as well

as fine-grained memory access, a bandwidth-aware data mapping

to fully leverage memory bandwidth, and ICS to leverage chip-level

parallelism as well as support fine-grained memory access.

Algorithm-SpecificAddressMapping:The key idea of proposed

address mapping is to aggregate previous interleaved data during

address mapping to reduce communication and provide potential

of chip-level parallelism as well as fine-grained memory access,

improving bandwidth utilization. Thus, we propose a logic-device

591

MICRO’19, October 12-16, 2019, Columbus, OH, USA Huangfu, et al.

address mapping scheme to address the challenge of fine-grained

random memory access. The scheme includes two optimizations.

The original address mapping is shown in Fig. 6 (a) with an

example of memory configuration in Table 1. Channel, rank, and

bank indexes are mapped to the lower significant bits of the logic

address, in order to improve memory-level parallelism and effec-

tive bandwidth. However, interleaving data across channels/ranks

destroys locality for NDP and always requires remote data access

to other DRAM components. Instead of interleaving data across

channels/ranks, the optimization-1 as shown in Fig. 6(b), maps the

lower significant bits to column and row addresses to aggregate

adjacent data within a rank locally. Still, another problem remains

that the data are still interleaved across 16 chips in each rank. This

chip-level interleaving means only 64B coarse-grained memory

access is supported within a rank, which cannot be fully utilized in

DNA seeding. Moreover, this prevents different chips from work-

ing in parallel. To solve above challenges, the optimization-2 is

proposed as shown in Fig. 6(c).

Col:
10 bits

Bank:
4 bits

Rank:
4 bits

Ch:
2 bits

Burst:
3 bits

Chip:
4 bits

Width:
2 bits

Row:
16 bits

Ch:
2 bits

Rank:
4 bits

Bank:
4 bits

Col:
10 bits

Row:
16 bits

Burst:
3 bits

Chip:
4 bits

Width:
2 bits

Ch:
2 bits

Rank:
4 bits

Chip:
4 bits

Bank:
4 bits

Col:
10 bits

Row:
16 bits

Burst:
3 bits

Width:
2 bits

Host Bandwidth - Aware

Coarse-Grained NDP Aware
(Without Chip-Level Parallelism)

64B Cache Line

64B Burst

Fine-Grained NDP Aware
(With Chip-Level Parallelism) 4B Burst

Fine-
GrainedPotential Chip-Level Parallelism

(a)

(b)

(c)
Figure 6: Algorithm-specific address mapping.

We consider CS signals as a part of the device address, which is

discussed in detail in ‘Enabling Individual Chip Select’. Originally,

such chip selection address space is embedded in the 9 least signifi-

cant bits of the logic address to access the 64B cacheline. We change

this and map the chip index to more significant bits in the address.

In this manner, adjacent data are stored in chips connected with the

same DB and will not be stored in chips connected with the second

DB until chips connected with the first DB are full. It improves the

task locality so that inter-chip communication is minimized, and

hence improves chip-level parallelism.

Bandwidth-AwareDataMapping: The key idea of proposed data

mapping is to fully leverage the available memory bandwidth from

different chips through bandwidth-aware data placement. If there

are enough free chips to hold duplicated index data, bandwidth-

aware data mapping will duplicate the index and allow different

copies of the index to be accessed in parallel. If the free chips are not

enough to hold another copy of index data, bandwidth-aware data

mapping will evenly map the index into all chips to fully leverage

available memory bandwidth from those chips.

Enabling Individual Chip Select (ICS): As mentioned in Sec-

tion 3, inter-task divergence prevents different DB-side accelera-

tors working in SIMD style. Although the algorithm-specific ad-

dress mapping provides potential for chip-level parallelism and

fine-grained memory access, the lock-step working pattern in con-

ventional DIMM prevents this from happening. We propose to en-

able the individual CS signal for each DRAM chip to overcome this

challenge. We first introduce the problem of conventional DIMM,

followed by the description of the proposed technique. Convention

DIMM uses a shared CS signal for all DRAM chips in the same

rank, causing the lock-step working pattern and making DIMM

suffer from divergence in DNA seeding. Fig. 7 (upper part) shows

the DB-side accelerators perform read operations on Chip-0 and

Chip-1 in a lock-step manner. Since the read address is random,

there is a whole tRC cycle between two reads. Even worse, only

50% of the output data (either from Chip-0 or Chip-1) is useful.

We propose the ICS technique, designing dedicated CS wires for

each DRAM chip [33], controlled by the RCD-side MC. A disabled

CS signal blocks the input command and the address, but the DRAM

chip still receives the System Clock (CLK) signal, the Clock Enable

(CKE) signal, and keeps working on previous memory commands.

C/A

ACT RD PRE
Burst

ACT RD PRE

LowHigh High HighLow Low

ACT RD PRE ACT RD PRE

High High High High High High
Burst Burst

High High High High High High
Burst Burst

CS 0
Data 0

CS 1
Data 1

Without Individual Chip Select (ICS)

Burst
HighLow Low LowHigh High

C/A

CS 0
Data 0

CS 1
Data 1

Mask
Mask

Mask

Mask Mask Mask

With Individual Chip Select (ICS) : C/A from chip 0

: Low CS to mask C/A

ACT
Burst : Data chip 0 needs

: C/A from chip 1ACT
Burst : Data chip 1 needs

Burst : Useless data

TSave
ESave

Figure 7: With/Without Individual Chip Select (ICS).

Fig. 7 (lower part) shows latency and energy saving with the ICS

technique. We first enable Chip-0 and disable Chip-1 with the CS

signals, and then strobe the first activation commend and address.

The first C/A are only taken by the enabled Chip-0. Right after that,

we switch the CS signal, enabling Chip-1 but disabling Chip-0. The

second C/A are then taken by the enabled Chip-1. The disabled

Chip-0 locks out the second activation command but keeps working

on the previous command it took. Similarly, we send read, precharge

command to Chip-0 and Chip-1, respectively, and get data from

them one after another. By adopting proposed ICS technique, the

latency is reduced due to pipelined commands. Furthermore, all

output data are fully useful, from where the energy is saved.

4.3 Inter-Rank Design for Scaling Out

In this subsection, we look at applications with larger memory

footprint, involving multiple ranks.

Besides adopting the intra-rank optimizations described above,

we further propose four methods to reduce the inter-rank commu-

nication overhead, overcoming the big data challenge. First, we will

describe two methods to support the inter-rank scaling out without

modification to the current hardware. Then, we describe how to use

the incoming NVDIMM hardware to address the issue of scalability.

Finally, we propose an algorithm-specific data compression scheme,

which can work with any of these three methods above, reducing

memory footprint and the communication overhead.

592

MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm MICRO’19, October 12-16, 2019, Columbus, OH, USA

Support Inter-Rank Comm. with CPU-polling: Our goal is to

support the inter-rank scaling out without modifications on either

the host or DIMM hardware. To this end, we leverage the host

CPU to poll all connected DIMMs periodically. If an inter-rank

data access is requested from a rank, the host will coordinate the

data transfer. Note that AIM [10] deals with the similar scaling out

problem by designing an additional bus across DIMMs. In addition

to the design simplicity, our method can achieve 3.43x speedup and

2.89x energy reduction, compared with AIM (details in Section 6).

The CPU-polling based inter-rank communication works in the

following steps, as shown in Fig. 8. 1 The host issues a polling

request to a DIMM. 2 Address router redirects this polling request

to the region of indicator bits in the Remote Data Buffer (RDB). 3 If

the bits fetched back to the host show remote data access is needed,

the host issues another request to bring back the information about

the remote data access. 4 Address router redirects this request for

remote data access information to the region of remote data info

in the RDB. 5 After receiving the information about remote data

access, the host issues memory access request to the destination

DIMM and fetches back the data. 6 The host sends the target data

back to the DB that needs the data.

…...

LRDIMM

Rank 2

RCDX8 X8

DB

Rank 4
Rank 1

RanksDRAM Chips

1 3 6

A

CtrL
…
...

…
...

…...

CPU M
C

MC

M
C

MC

…
...

C
H

3

…...
CH2

LRDIMM
LRDIMM

Polling Flow

Interrupt Flow

5D

Data Buffer (DB)

Remote Data Info
Indicator Bits

…
Addr

Router

Reserved for Future Use (RFU) Pin

…
...

C
H

 1

ACC ACC ACC

X8 X8

DB

ACC
2
4

B

C

E

Figure 8: Work flow of polling-based and interrupt-based

inter-rank communication.

Support Inter-Rank Comm. with Interruption: The polling-

based method suffers from occupying the host and the DDR bus

even without data transfer. Due to the occupancy of the memory

bus during polling, the effective bandwidth for the memory bus

to transfer data is reduced. In addition, since polling operation is

read operation in MEDAL and proposed host-prioritized request

scheduling will be applied, extra latency is needed, leading to perfor-

mance degradation. To solve above issues, we propose to leverage

the interrupt mechanism and the Reserved for Future Use (RFU)

pin in LRDIMM [49], so that requests from the DB-side accelerators

will notify CPU through the RFU pin which will be connected to

the Advanced Programmable Interrupt Controller (APIC).

Specifically, the interrupt based inter-rank communicationworks

in following steps, as shown in Fig. 8, A The DB that needs to

access remote data issues interrupt signal to the host via the RFU pin.

B The host issues request to the DB to bring back the information

about remote data access. C Address router redirects the request

for remote data access information to the region of remote data info

in the RDB. D After receiving the information about remote data

access, the host issues memory access request to the destination

DIMM and fetches the data back. E The host sends the target data

back to the DB that needs the data.

Host-prioritized Request Scheduling:Asmentioned previously,

since both the host-side MC and RCD-side MC can send requests

to the DRAM and the host-side MC is not aware of requests from

the RCD-side MC, timing issue may arise. Request scheduling is

needed to satisfy the DDR timing constraint for the host-side MC.

C/A
Data

…
C/A ACT RD PRE

Burst Burst
ACT RD PRE ACT ACT RD PRE

C/A
Data

C/A ACT RD PRE

Burst Burst
ACT RD PRE ACT RD PRE ACT

Without Scheduling

With Scheduling

C/A
Data

C/A ACT RD PRE

Burst
ACT RD PRE

Close Page Policy - Expected

tRCD+ tCAS

(a)

Unpredictable and long latency
(b)

2tRCD+2tCAS+tRP

(c)

C/A: C/A from the host
C/A: C/A chip 0 receives
Data: Data out of chip 0
ACT : C/A from the host

Burst : Data needed by the host

ACT : C/A from the ACC

Burst : Data needed by the ACC

= t'RCD+ t'CAS

Host-side requests are
prioritized to issue

Figure 9: Host-prioritized request scheduling.

We choose to implement close-page policy in the host-side MC

and design a host-prioritized request scheduling for the RCD-side

MC. As shown in Fig. 9, with close-page policy, the host-side MC

will expect its memory requests to the DRAM to be back after

tRCD + tCAS . However, because the RCD-side MC also issues mem-

ory requests to the DRAM, without specific scheduling, the latency

for memory requests from the host-side MC is unpredictable and

there will be issues with the DDR timing constraint. To address this

issue, RCD-side MC follows host-prioritized request scheduling to

serve memory requests from the host as soon as the DRAM finishes

its current task. For the host-side MC, we modify its DDR timing

parameters, i.e., tRCD and tCAS , so the host-side MC has a longer

expectation of the data return time to allow the RCD-side MC to

be able to schedule those requests.

Reduce Inter-Rank Traffic with NVDIMM: Both the polling-

based and the interruption-based techniques serve the goal of sup-

porting the inter-rank communication. Further, we propose the

NVDIMM-P approach to eliminate the inter-rank communication.

Different from NVDIMM-F/N, which either requires pairing a

storage DIMM near the memory DIMM or only leverages Non-

Volatile Memory (NVM) on DIMM for backup purpose. NVDIMM-P

integrates both DRAM and NVM on the same DIMM and is close to

593

MICRO’19, October 12-16, 2019, Columbus, OH, USA Huangfu, et al.

release [44, 48]. Alongside DRAM, NVM on NVDIMM-P can also be

memory-mapped, e.g., Intel Optane Technology [24]. With much

higher capacity, NVM can act as a near-memory cache. Different

from NVDIMM-F/N, in NVDIMM-P, the host and the DB can have

byte accessibility to both the DRAM and the NVM.

We leverageNVMs,which can be up to 10× denser thanDRAM [53],

on NVDIMM-P to eliminate the inter-rank traffic. Specifically, we

place index data used to be stored in remote ranks into the NVM

locally. The work flow is described below, as shown in Fig. 10 (a).

1 DRAM will be accessed if the target data is within DRAM. 2

Otherwise, the memory request will go to the NVM. NVDIMM-P

based MEDAL converts remote memory accesses to remote ranks

into local memory accesses to on-DIMM NVM.

Reduce Memory Footprint and Comm. with Data Compres-

sion: To reduce the memory footprint and communication, we

propose an algorithm-specific data compression. Note that proposed

data compression can work together with all designs described

above and provide additional benefits.

(1) Counters as the key data structure: During DNA seeding, the

occurrence arrayOR (x , i) needs to be accessed frequently. The entry

OR (x , i) is the occurrence of a nucleotide x before the ith symbol

of BR . An example is shown in Fig. 10 (b) and (c), there are 2 A, 1
T , 1 C , and no G in the first 4 nucleotides in BR (AATC). OR (A, 3),
OR (T , 3), OR (C, 3), and OR (G, 3) are 2, 1, 1, and 0, respectively. To

summarize, the occurrence array OR (x , i) is an array of counters.

A ATCGGCGAG… T GCAGAACGT…...B :R

A T C
0 A 1 0 0 0
1 A 2 0 0 0
2 T 2 1 0 0
3 C 2 1 1 0

...

G

... ...

B Ri
Target OR

O(G,0):0 O(G,16):4

O(A,0):1 AT
CG
GC
GA
...

O(T,0):0
O(C,0):0

O(A,16):5 GC
AG
AA
CG
...

O(T,16):4
O(C,16):3

…
...

 O in BWA-MEMR

Row Head Bucket Compressed Bucket Compressed Bucket

Row Head Bucket Compressed Bucket Compressed Bucket

O(A,m):32 b
O(T,m):32 b
O(C,m):32 b

O(A,m,n):11 b
O(T,m,n):11 b
O(C,m,n):11 b

GGT
TAC
…...

ACT
GGT
......

O(A,m,32):11 b
O(T,m,32):11 b
O(C,m,32):11 b

CTA
CGT
…...

…

...

…

Row 0:

Row 2:

Row 1:

Fine-Grained Bucket in MEDAL

32 bits 32 bits 2 bits O(A,22)=O(A,16)+3=8

O(G,m)=m-O(A,m)-O(T,m)-O(C,m) O(A,m+36)=O(A,m)+O(A,m,32)+1

Bucket 0 Bucket 1

DBDBDB

C
trLDB

DRAM

NVM

DRAMDRAMDRAM

Ra
nk

DBDB
DB

C
trL

DB

DRAM

NVM

DRAMDRAMDRAM

Ran
k

DBDBDB

C
trL

DB

DRAM

NVM

DRAMDRAMDRAM

Rank

DBDBDB

C
trL

DB

DRAM

NVM

DRAMDRAM

NVDIMM

DRAM

Rank
(a)

1

2

(c) (d)

(b)

(e)
Figure 10: (a) Processing within NVDIMM. (b) Burrows-

Wheeler Transform of the reference sequence. (c) The target

O-table. (d) Bucket structure in BWA-MEM. (e) Fine-grained

bucket in MEDAL with two types of buckets, i.e., row head

bucket and compressed bucket.

(2) Bucket data structure in software: As shown in Fig. 10 (c), for

human genome, each entry in OR (x , i) is 32-bit, the size of OR (x , i)
is 4 × 32/2 = 64× larger than the size of BR . To reduce the memory

footprint, the widely used software, i.e., BWA-MEM, leverages a

data structure called ‘Bucket’. A bucket consists of a bucket head

and a bucket body. The bucket head is a checkpoint, storing the

up-to-date values of OR (x , i). BR is stored within the bucket body.

In this manner, when an entry in OR (x , i) is needed, BWA-MEM

will first locate the target bucket. Then, the values ofOR (x , i) in the

bucket head and nucleotides in BR within the bucket body will be

read out. Finally, the values of target OR (x , i) can be reconstructed

with the up-to-date values in the checkpoint and BR via counting.

As shown in Fig. 10 (d), with this bucket structure, only values of

OR (x , i) in the bucket head are 32-bit, nucleotide in the bucket body

is only 2-bit.

(3) Compressed fine-grained bucket: Observing that the precision of

data within the bucket head is much higher than that of data in

the bucket body, the key idea of data compression is to reduce the

precision of data in the bucket head via fine-grained checkpoint.

Compared with BWA-MEM, instead of storing global checkpoints,

fine-grained checkpoints are used with proposed data compression.

There are two types of buckets with proposed data compression,

i.e., row head bucket and compressed bucket. As shown in Fig. 10

(e), with data compression, each DRAM row begins with a row head

bucket, containing a global checkpoint with up-to-data values for

OR (x , i). The row head bucket is followed by many compressed

buckets, which contains a fine-grained, local checkpoint for only

OR (x , i) in this row, meaning much lower precision is enough for

data in the bucket head of compressed bucket.

With proposed data compression, MEDAL first accesses the

bucket head in the row head bucket. Then, it retrieves the tar-

get compressed bucket. Next, the target OR (x , i) can be derived by

adding the local counters from the compressed bucket with the

global counters in the row head bucket. Further, in the bucket head,

we only store 3 values, the last value can be derived by subtraction.

5 DISCUSSION

Extension to Other Applications: MEDAL solve the problem of

fine-grained random memory access. Our future work will extend

MEDAL to other applications by replacing the logics in the DBswith

general purpose processors or FPGAs. We expect applications such

as graph processing [4], database searching [31], and sparse matrix

computing [41] will also benefit from the proposed techniques.

Interface Choice: Similary to [6, 50, 57], we choose DDR as the

interface for MEDAL due to two reasons: First, with DDR as the

interface, we can configure the DIMMs into regular memory when

no DNA seeding is performed, providing more flexibility; Second,

DIMM based approach can be easily scale out. Note that the op-

timizations/techniques proposed can be easily applied to build

PCIe/IO based accelerator.

System Integration and User Interface: MEDAL does not re-

quire modification of either the DRAM components or the CPU

chip. MEDAL connects to the system with standard DDR bus, i.e,

with DIMM slots. As described in Section 4.2, the host controls

MEDAL with memory instructions.

To this end, the software stack needs modifications. Similar to

other NDP/PIM solutions [4, 54, 57], we will need the OS to re-

serve the memory space in DIMMs to MEDAL, and provide I/O

mapping for these space, so that the user can access the space with

the sense of their physical address. Memory channels performing

DNA seeding will be dedicated to this task. The host can work on

other tasks with data mapped to other memory channels. The pro-

gramming model of MEDAL is similar to CUDA. We will provide

an Application Programming Interface (API) for programmers to

control the application memory space allocation for MEDAL and

a memcpy function to copy data between the user memory space

and the application memory space of MEDAL. With the data ready

in the memory space of MEDAL, users can launch the accelerator

to perform DNA seeding.

594

MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm MICRO’19, October 12-16, 2019, Columbus, OH, USA

(a) (b)

(c) (d)

0
4
8

12
16
20
24
28
32
36
40

DB 6
(Triticum

dicoccoides)

DB 7
(Pseudotsuga

menziesii)

DB 8
(Pinus taeda)

DB 9
(Picea glauca)

DB 10
(Pinus

lambertiana)

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Databases

Inter-Rank Performance Improvement Chameleon with polling
AIM
With polling
With Interrupt
With NVDIMM
With polling and data compression
With interrupt and data compression
With NVDIMM and data compression

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

DB 6
(Triticum

dicoccoides)

DB 7
(Pseudotsuga

menziesii)

DB 8
(Pinus taeda)

DB 9
(Picea glauca)

DB 10
(Pinus

lambertiana)

En
er

gy
 R

ed
uc

tio
n

Databases

Inter-Rank Energy Reduction
Chameleon with polling AIM
With polling With Interrupt
With NVDIMM With polling and data compression
With interrupt and data compression With NVDIMM and data compression

0
20
40
60
80

100
120

 DB 1
(Venustaconcha

ellipsiformis)

DB 2
(Camelus

dromedarius)

DB 3
(Zapus hudsonius)

DB 4
(Homo sapiens

(human))

DB 5
(Clitarchus

hookeri)

Pe
rf

or
m

an
ce

Im

pr
ov

em
en

t

Databases

Intra-Rank Performance Improvement Chameleon with polling
AIM
With address & data mapping
Add ICS

0
100
200
300
400
500
600
700
800

 DB 1
(Venustaconcha

ellipsiformis)

DB 2
(Camelus

dromedarius)

DB 3
(Zapus hudsonius)

DB 4
(Homo sapiens

(human))

DB 5
(Clitarchus

hookeri)

En
er

gy
 R

ed
uc

tio
n

Databases

Intra-Rank Energy Reduction Chameleon with polling
AIM
With address & data mapping
Add ICS

Figure 11: Performance improvement and energy reduction of MEDAL and different NDP accelerators for FM-index based

DNA seeding. Results are normalized to that of a 16-thread CPU. (a). Intra-rank performance improvement. (b). Intra-rank

energy reduction. (c). Inter-rank performance improvement. (d). Inter-rank energy reduction.

Table 1: Configure of the Server and MEDAL

Configuration of the Server

CPU Model Intel Xeon E5-2680 v3

CPU Clock Frequency (GHz) 2.50

Memory Capacity (GB) 400

L1 (KB)/L2 (KB)/L3 (MB) Cache 64 / 256 / 32

Configuration of MEDAL

Memory Capacity (GB) 384

Memory Channels 4

DIMMs per Memory Channels 3

Ranks per DIMM 4

DRAM Chips per Rank 16

DRAM Chips per DB 2

Parameters of DDR4 DRAM

Capacity 4Gb × 4

Bank Groups 2

Banks per BankGroup 2

Clock Frequency (1/tCK) 1,200MHz

tRCD-tCAS-tRP (ns) 16-16-16

6 EXPERIMENTAL RESULTS

The experimental setup, results, and analysis of the experimental

results are presented in this section.

6.1 Experimental Setup

Configuration of the Baseline: The baseline for FM-index based

DNA seeding and Hash-index based DNA seeding are BWA-MEM

[34] and SMALT [46], respectively, running in a server with an

Intel Xeon E5-2680 v3 CPU. The detailed configuration information

of the server is shown in Table 1.

Configuration of MEDAL: Ramulator [30] is modified to build a

cycle-accurate simulator for MEDAL. The configuration of MEDAL

is shown in Table 1. The timing, energy, and area parameters of

the DB customized logics are estimated by pre-layout Design Com-

piler [51] with 28 nm technology[1]. We set timing constraint as

1.2GHz using tt design corner. Since it is a very simple circuit with

lots of design slacks, we expect similar post-layout results. Those

parameters of customized logics in DB are shown in Table 2. Since

the address router only involves a few comparators to decide which

components the read command should go to, it’s not included in

Table 2: Design Parameters of Customized Logics in DB

Module Latency (Cycles) Power (mW) Leakage (uW) Area (um2)

Addr Trans 20 4.05 18.39 4600.35

SMEM 1 6.00 13.46 3325.45

Suffix 5 0.52 4.31 1015.59

Table 2. The timing parameters of DRAM chip used in our experi-

ments are shown in Table 1. The energy consumption of DRAM is

derivated by feeding the command trace of DRAM from Ramulator

to DRAMPower [8]. We use the parameters of energy for datapath

from CACTI-IO [27]. The timing and energy parameters for NVM

in NVDIMM are estimated with Intel’s Optane memory [23, 25].

The correctness of our simulation is guaranteed, since the hardware

design follows the same (1) computing arithmetic, (2) execution or-

der, and (3) data access order as the software. Our simulator ensures

correctness by using traces from the software.

NDP Accelerators for Comparison:We modified Ramulator as

well to build cycle-accurate simulators for Chameleon and AIM. We

use the same memory configuration for those two accelerators. For

Chameleon, because it doesn’t support any kind of communication,

we add polling-based communication mechanism to it.

Databases: Ten different genomes with different sizes from 1.59

billion bases to 27.60 billion bases from NCBI [43] are used in our

experiments. The name of those ten databases are shown in Fig. 11.

We name them as DB1 to DB10 for short in other figures.

Query Sequences: Ten million query sequences with length of

101 were extracted exactly from corresponding genomes.

6.2 Intra-Rank Evaluation

For small databases which can be fitted in a single DRAM rank, the

performance and energy-efficiency comparisons between MEDAL

and other DIMM based NDP accelerators for DNA seeding are

shown in Fig. 11 (a) and Fig. 11 (b). All results are normalized to

the that of the 16-thread CPU.

For intra-rank tasks, with only proposed address and data map-

ping, MEDAL outperforms the 16-thread CPU, Chameleon, and AIM

by 19.62x, 3.91x, and 1.75x. Then, ICS improves the performance of

595

MICRO’19, October 12-16, 2019, Columbus, OH, USA Huangfu, et al.

0
20
40
60
80

100

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

B
W

 U
til

iz
at

io
n

(%
)

Databases

Evaluation of BW Utilization
BWA-MEM Chameleon AIM MEDAL

(a)

(b)

0%
20%
40%
60%
80%

100%

DB 6 DB 7 DB 8 DB 9 DB 10

Polling based method
Energy Breakdown

Computation Communication
DRAM

0%
20%
40%
60%
80%

100%

DB 6 DB 7 DB 8 DB 9 DB 10

Interrupt based method
Energy Breakdown

Computation Communication
DRAM

0%
20%
40%
60%
80%

100%

DB 6 DB 7 DB 8 DB 9 DB 10

NVDIMM based method
Energy Breakdown

Computation Communication
DRAM NVDIMM

Figure 12: (a). Energy breakdown of MEDAL. (b). Bandwidth

utilization of different platforms.

MEDAL by 1.92x via enabling efficient fine-grained memory access

and chip-level parallelism. Further, the algorithm-specific data com-

pression improves the performance of MEDAL by 1.85x, because it

effectively reduces the memory footprint and leaves more space for

data mapping to utilize. Putting all proposed techniques together,

MEDAL outperforms the 16-thread CPU, Chameleon, and AIM by

69.69x, 13.90x, and 6.23x, respectively.

As comparison, AIM performs coarse-grained memory access

without extramemory bandwidth. Chameleon performs fine-grained

memory access. However, most data fetched out of memory in

Chameleon is useless due to the inter-task divergence of DNA seed-

ing and the SIMD-style processing in Chameleon. Also, there is

no chip-level parallelism in Chameleon. The good performance

of MEDAL, compared with others, comes from its full parallelism,

i.e., both rank-level and chip-level parallelism, and its fine-grained

memory access with high bandwidth utilization.

Energy-wise, MEDAL reduces energy consumption of the 16-

thread CPU, Chameleon, and AIM by 426.27x, 8.54x, and 3.95x,

respectively. High bandwidth utilization and short processing time

contribute to its the high energy efficiency.

6.3 Inter-Rank Evaluation

For databases that cannot be fitted within a single rank and need

inter-rank communication, similarly, the comparisons are shown

in Fig. 11 (c) and Fig. 11 (d).

For inter-rank tasks, on average, polling-based design outper-

forms the 16-thread CPU, Chameleon, and AIM by 9.97x, 3.57x, and

1.35x, respectively. Interrupt-based design outperforms the above

platforms by 14.81x, 5.31x, and 2.01x, respectively. NVDIMM-based

design outperforms them by 16.09x, 5.76x, and 2.19x, respectively.

Compared with polling-based design, interrupt-based design has

better performance due to two reasons. First, interrupt-based design

doesn’t need to occupy the memory channel for polling operation,

meaning no negative effect on data transfer. Second, polling opera-

tion is read operation and due to proposed host-prioritized request

scheduling, extra latency is needed for read operation from the

host, which will degrade the performance. Polling-based design, on

the other hand, requires less modifications. For example, it doesn’t

require to connect RFU to APIC in the host and add hardware in-

terrupt vector. The superior strength of NVDIMM based approach

150
155
160
165
170
175
180

0

20

40

60

80

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

D
at

a
/ I

te
ar

tio
n

(b
its

)

In
de

x
Si

ze
 (G

B
)

Databases

Evaluation of Data Compression
Index w/o Compression
Index w/ Compression
Data w/o Compression
Data w/ Compression

(a)

0
20
40
60
80

25 50 100 200 400Pe
rf

or
m

an
ce

Im

pr
ov

em
en

t

Read Length

Sensitivity Study about Read Length
Intra-Rank: Homo sapiens (human)
Inter-Rank: Pseudotsuga menziesii

(b)

Figure 13: (a). Evaluation of data compression. (b).Sensitivity

study about read length.

is that we can use off-the-shelf NVDIMM to deal with the issue of

communication without occupation of the memory channel and it

provides very good performance.

Energy-wise, polling-based design reduces energy consumption

of the 16-thread CPU, Chameleon, and AIM by 185.95x, 4.54x, and

1.97x, respectively. Interrupt-based design reduces energy consump-

tion of above platforms by 251.08x, 6.13x, and 2.66x, respectively.

NVDIMM-based design reduces energy consumption of above plat-

forms by 164.18x, 4.01x, and 1.74x, respectively.

6.4 Energy Breakdown

The energy breakdown for MEDAL is in Fig. 12 (a). For all designs,

computation consumes less than 1.0% energy. Because DNA seeding

only involves simple integer operations, customized lightweight log-

ics will be much more efficient. As for communication, it consumes

10.0% energy at most, which means our communication mech-

anisms are energy-efficient. For polling-based design, interrupt-

based design, and NVDIMM-based design, DRAM consumes 95.4%,

89.9%, and 48.9% energy, respectively. DRAM’s domination on the

energy consumption is due to the energy-efficient lightweight log-

ics and communication mechanisms. For NVDIMM-based approach,

NVM consumes 48.2% energy on average. The portion of energy

consumed by NVM grows with the size of databases, because the

larger the database, the higher the possibility that memory requests

will go to NVM.

6.5 Bandwidth Utilization

We define bandwidth utilization as the ratio between useful data

and the actual amount of data fetched out the memory. As shown

in Fig. 12 (b), on average, MEDAL has the highest bandwidth uti-

lization ratio - 82.81%, while Chameleon has the lowest bandwidth

ratio - only 10.29%.

The high bandwidth utilization ratio of MEDAL comes from

its fine-grained memory accessibility. Proposed address mapping

provides potential for fine-grained memory access and ICS makes

it reality. As comparison, coarse-grained memory access lags the

bandwidth utilization ratio of AIM. For Chameleon, since there is

no optimization for non-SIMD processing, data from most DRAM

chips become useless, reducing its bandwidth utilization ratio.

596

MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm MICRO’19, October 12-16, 2019, Columbus, OH, USA

(a) (b)

0
15
30
45
60

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

Pe
rf

or
m

an
ce

Im

pr
ov

em
en

t

Databases

Performance Improvement (Hash-index)
Chameleon AIM MEDAL

0
400
800

1200
1600

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

En
er

gy

R
ed

uc
tio

n

Databases

Energy Reduction (Hash-index)
Chameleon AIM MEDAL

Figure 14: Performance improvement (a) and energy reduction (b) of MEDAL and different NDP accelerators for Hash-index

based DNA seeding. Results are normalized to that of a 16-thread CPU.

6.6 Performance of Data Compression

As shown in Fig. 13 (a), data compression reduces the sizes of

DNA indexes for 48.9% on average, leading to reduction in memory

footprint and providing more space for data mapping to utilize. In

addition, the amount of data needs to be fetched each iteration is

also reduced due to the smaller size of compressed bucket. Thus,

there is no extra memory accesses and performance degradation

after data compression.

6.7 Sensitivity Study about Read Length

Reads with length of 101 are typical with the next generation se-

quencing technology [12, 18], thus we choose 101 as the representa-

tive length. In fact, MEDAL can support reads with different lengths.

The experimental results on an intra-rank case and an inter-rank

case with reads with various length is in Fig. 13 (b). For the intra-

rank design, MEDAL with interrupt provides higher speedup (over

CPU) for longer reads due to benefits from more memory traffic.

For the inter-rank design, the performance is stable with respect to

the read length, because communication compensates the benefits

from more memory traffic. When the read length is even longer,

in which cases other algorithms are used, e.g., D-SOFT in Darwin

[52], we can change customized logics inside the DBs to match the

algorithms. We expect similar performance gain, since the seeding

of ultra-long read is still memory bound, which MEDAL is good at.

6.8 Hash-index based DNA Seeding Algorithm

For Hash-index based DNA seeding, the experimental rsults are

shown in Fig. 14 (a) and Fig. 14 (b). The experimental results show

that MEDAL outperforms the 16-thread CPU, Chameleon, and

AIM by 28.60x, 4.33x, and 2.90x, respectively. About the energy-

efficiency, MEDAL outperforms above platforms by 668.95x, 2.22x,

and 2.27x, respectively.

7 RELATEDWORK

This section introduces related work of MEDAL.

Accelerator for DNA Seeding: Most previous work proposes

their designs with FPGA [9, 14–16] and GPU [38, 40] to deal with

DNA seeding. Darwin [52] and GenAx [18] are two accelerators

for DNA alignment based on ASIC design and automata. Both of

themmajorly focus on DNA extension. For the seeding part, both of

them use hash-index, instead of FM-index, while MEDAL majorly

focuses on FM-index and can deal with hash-index as well.

Although above architectures have enough computation capa-

bility, data movement is a serious issue. Moreover, as mentioned

before, DNA seeding is bounded by memory, there is limited im-

provement space for approaches which only optimize computation.

In contrast, MEDAL focuses on memory and performs computation

near the data.

NDP Solutions for DNA Seeding: MPU-BWM leverages HMC

to accelerate DNA seeding by placing a RISC-V core in the logic

die [55]. However, 3D-stacked memory is not cost-efficient, has lim-

ited capacity [47], and doesn’t provide extra internal bandwidth [11].

AIM [10] attaches FPGAs and dedicated buses to DIMMs to accel-

erate DNA seeding. However, AIM doesn’t leverage rank-level par-

allelism in DIMMs, leading to limited performance improvement.

Compared with AIM, MEDAL specifically optimizes fine-grained

memory access with address mapping, data mapping, and individ-

ual chip selection, providing more bandwidth and parallelism. Fur-

thermore, MEDAL explores four novel approaches to enhance the

scalability. Chameleon [6] provides a general-purpose, SIMD-style,

DIMM based NDP architectures. However, because Chameleon

focuses on SIMD-style processing, even after a communication

mechanism is added, it’s not good at DNA seeding. MEDAL out-

performs AIM and Chameleon by 3.43x and 8.37x on average. EMU

Technology also has the potential to accelerate DNA seeding by

coupling lightweight logics to memory and migrating threads [13].

PIM Solutions for DNA Seeding: UPMEM modifies the DRAM

die to accelerate DNA alignment [54, 57]. RADRA [21] and PRinS [29]

leverage Resistive Random Access Memory (ReRAM) to perform

DNA seeding and Seed Extension. Above platforms either require

modifications to the DRAM die or are long-term architecture. In

contrast, MEDAL leverages off-the-shelf DRAM components and is

a practical approach.

8 CONCLUSION

To accelerate DNA seeding cost and energy efficient, we propose

MEDAL, a practical and energy efficient NDP architecture. For

small databases, we propose the intra-rank design, together with an

algorithm-specific address mapping, bandwidth-aware data map-

ping, and Individual Chip Select (ICS) to address the challenge of

random memory access, improving parallelism and bandwidth uti-

lization. Furthermore, to address the challenge of scalability, we

propose three inter-rank designs (polling-based communication,

interrupt-based communication, and NVDIMM-based solution). In

addition, we propose an algorithm-specific data compression tech-

nique to reduce memory footprint, introduce more space for the

data mapping, and reduce the communication overhead. Experimen-

tal results show that for three proposed designs, on average, MEDAL

can achieve 30.50x/8.37x/3.43x speedup and 289.91x/6.47x/2.89x en-

ergy reduction when compared with a 16-thread CPU baseline and

two state-of-the-art NDP accelerators, respectively.

ACKNOWLEDGMENTS

This work was supported in part by NSF 1816833, 1533933, 1719160,

1730309, and CRISP, one of six centers in JUMP, a SRC program

sponsored by DARPA.

597

MICRO’19, October 12-16, 2019, Columbus, OH, USA Huangfu, et al.

REFERENCES
[1] 2019. 28nm Technology Libraries. https://www.faraday-tech.com/cn/

category/BrowseByTechnology?method=browserCategory&tech=28nm&
master.ipSearchForm.technology=28nm.

[2] Nauman Ahmed, Koen Bertels, and Zaid Al-Ars. 2016. A comparison of seed-and-
extend techniques in modern DNA read alignment algorithms. In Bioinformatics
and Biomedicine (BIBM), 2016 IEEE International Conference on. IEEE, 1421–1428.

[3] Nauman Ahmed, Vlad-Mihai Sima, Ernst Houtgast, Koen Bertels, and Zaid Al-Ars.
2015. Heterogeneous hardware/software acceleration of the BWA-MEM DNA
alignment algorithm. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 240–246.

[4] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2016. A scalable processing-in-memory accelerator for parallel graph processing.
ACM SIGARCH Computer Architecture News 43, 3 (2016), 105–117.

[5] ARM. 1999. AMBA Specification (Rev 2.0). (1999).
[6] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.

2016. Chameleon: Versatile and practical near-DRAM acceleration architec-
ture for large memory systems. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–13.

[7] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 52.

[8] Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias Jung,
Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens. 2012. DRAM-
Power: Open-source DRAM power & energy estimation tool. URL: http://www.
drampower. info 22 (2012).

[9] Mau-Chung Frank Chang, Yu-Ting Chen, Jason Cong, Po-Tsang Huang, Chun-
Liang Kuo, and Cody Hao Yu. 2016. The SMEM Seeding Acceleration for DNA Se-
quence Alignment. In Field-Programmable Custom Computing Machines (FCCM),
2016 IEEE 24th Annual International Symposium on. IEEE, 32–39.

[10] Jason Cong, Zhenman Fang, Michael Gill, Farnoosh Javadi, and Glenn Rein-
man. 2017. AIM: accelerating computational genomics through scalable and
noninvasive accelerator-interposed memory. In Proceedings of the International
Symposium on Memory Systems. ACM, 3–14.

[11] Hybrid Memory Cube Consortium. 2013. Hybrid memory cube specification 1.0.
Last Revision Jan (2013).

[12] Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R Maguire,
Christopher Hartl, Anthony A Philippakis, Guillermo Del Angel, Manuel A Rivas,
Matt Hanna, et al. 2011. A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nature genetics 43, 5 (2011), 491.

[13] EMUTechnology. 2017. EMU Architecture. https://www.emutechnology.com/
technology/.

[14] Edward Fernandez, Walid Najjar, and Stefano Lonardi. 2011. String matching
in hardware using the FM-index. In Field-Programmable Custom Computing
Machines (FCCM), 2011 IEEE 19th Annual International Symposium on. IEEE,
218–225.

[15] Edward B Fernandez, Walid A Najjar, Stefano Lonardi, and Jason Villarreal.
2012. Multithreaded FPGA acceleration of DNA sequence mapping. In High
Performance Extreme Computing (HPEC), 2012 IEEE Conference on. 1–6.

[16] Edward B Fernandez, Jason Villarreal, Stefano Lonardi, and Walid A Najjar. 2015.
FHAST: FPGA-based acceleration of Bowtie in hardware. IEEE/ACM Transactions
on Computational Biology and Bioinformatics (TCBB) 12, 5 (2015), 973–981.

[17] National Center for Biological Information. 2018. GenBank and WGS Statistics.
https://www.ncbi.nlm.nih.gov/genbank/statistics/.

[18] Daichi Fujiki, Aran Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das,
David Blaauw, and Satish Narayanasamy. 2018. GenAx: a genome sequencing ac-
celerator. In Proceedings of the 45th Annual International Symposium on Computer
Architecture. IEEE Press, 69–82.

[19] Laiq Hasan, Yahya M Khawaja, and Abdul Bais. 2008. A Systolic Array Architec-
ture for the Smith-Waterman Algorithm with High Performance Cell Design.. In
IADIS European Conf. Data Mining. 35–44.

[20] Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid Al-Ars. 2016.
GPU-Accelerated BWA-MEM Genomic Mapping Algorithm Using Adaptive Load
Balancing. In International Conference on Architecture of Computing Systems.
Springer, 130–142.

[21] Wenqin Huangfu, Shuangchen Li, Xing Hu, and Yuan Xie. 2018. RADAR:
a 3D-ReRAM based DNA alignment accelerator architecture. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[22] National Human Genome Research institute. 2018. DNA Sequencing Costs: data.
https://www.genome.gov/27541954/dna-sequencing-costs-data/.

[23] Intel. 2018. Intel Optane DC Persistent Memory. https://www.intel.com/content/
www/us/en/products/docs/memory-storage/optane-persistent-memory/what-
is-intel-optane-dc-persistent-memory-video.

[24] Intel. 2018. Intel’s 3D XPoint Technology Products. https://software.intel.com/en-
us/articles/3d-xpoint-technology-products.

[25] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. arXiv preprint arXiv:1903.05714 (2019).

[26] Hanlee Ji Jay Shendure. 2008. Next-generation DNA sequencing. Nature biotech-
nology 26, 10 (2008), 1135–1145.

[27] Norman P Jouppi, Andrew B Kahng, Naveen Muralimanohar, and Vaishnav
Srinivas. 2015. CACTI-IO: CACTI with off-chip power-area-timing models. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 23, 7 (2015), 1254–
1267.

[28] Jung-Yup Kang, Sandeep Gupta, and J-L Gaudiot. 2004. Accelerating the ker-
nels of BLAST with an efficient PIM (processor-in-memory) architecture. In
Computational Systems Bioinformatics Conference, 2004. IEEE, 552–553.

[29] Roman Kaplan, Leonid Yavits, Ran Ginosar, and Uri Weiser. 2017. A resistive
CAM Processing-in-Storage architecture for DNA sequence alignment. arXiv
preprint arXiv:1701.04723 (2017).

[30] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. Computer Architecture Letters 15, 1 (2016), 45–49.

[31] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the walkers: Accelerating index tra-
versals for in-memory databases. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 468–479.

[32] Ben Langmead and Steven L Salzberg. 2012. Fast gapped-read alignment with
Bowtie 2. Nature Methods 9 (04 03 2012), 357 EP –. https://doi.org/10.1038/nmeth.
1923

[33] Yebin Lee, Soontae Kim, Seokin Hong, and Jongmin Lee. 2013. Skinflint DRAM
system: Minimizing DRAM chip writes for low power. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Symposium on.
IEEE, 25–34.

[34] Heng Li. 2013. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv preprint arXiv:1303.3997 (2013).

[35] Heng Li and Richard Durbin. 2009. Fast and accurate short read alignment with
Burrows–Wheeler transform. bioinformatics 25, 14 (2009), 1754–1760.

[36] Isaac TS Li, Warren Shum, and Kevin Truong. 2007. 160-fold acceleration of
the Smith-Waterman algorithm using a Field Programmable Gate Array (FPGA).
BMC bioinformatics 8, 1 (2007), 185.

[37] Pei Liu, Ahmed Hemani, Kolin Paul, Christian Weis, Matthias Jung, and Norbert
Wehn. 2017. 3D-stacked many-core architecture for biological sequence analysis
problems. International Journal of Parallel Programming 45, 6 (2017), 1420–1460.

[38] Yongchao Liu and Bertil Schmidt. 2012. Evaluation of GPU-based seed generation
for computational genomics using Burrows-Wheeler transform. In Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International. IEEE, 684–690.

[39] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. 2013. CUDASW++ 3.0:
accelerating Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions. BMC bioinformatics 14, 1 (2013), 117.

[40] Mian Lu, Yuwei Tan, Ge Bai, and Qiong Luo. 2012. High-performance short
sequence alignment with GPU acceleration. Distributed and Parallel Databases
30, 5-6 (2012), 385–399.

[41] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2016. Adaptive multi-
level blocking optimization for sparse matrix vector multiplication on GPU.
Procedia Computer Science 80 (2016), 131–142.

[42] NCBI. [n. d.]. Genome of Ambystoma Mexicanum (Axolotl). https://www.ncbi.
nlm.nih.gov/genome/381.

[43] NCBI. 2018. Genome Database. https://www.ncbi.nlm.nih.gov/genome.
[44] Kazuichi Oe, Takeshi Nanri, and Koji Okamura. 2016. Feasibility study for

building hybrid storage system consisting of non-volatile DIMM and SSD. In
Computing and Networking (CANDAR), 2016 Fourth International Symposium on.
IEEE, 454–457.

[45] University of Cambridge Metabolic Research Labs. 2012. The BarraCUDA Project.
http://seqbarracuda.sourceforge.net/.

[46] Dr Hannes Ponstingl. 2016. SMALT. http://www.sanger.ac.uk/science/tools/
smalt-0.

[47] Seth H Pugsley, Jeffrey Jestes, Rajeev Balasubramonian, Vijayalakshmi Srinivasan,
Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014. Comparing implementations
of near-data computing with in-memory map reduce workloads. IEEE Micro 34,
4 (2014), 44–52.

[48] Arthur Sainio. 2016. NVDIMM: Changes are Here So What’s Next. In-Memory
Computing Summit (2016).

[49] Samsung. 2017. 288pin Load Reduced DIMM based on 4Gb E-die.
https://www.samsung.com/semiconductor/global.semi/file/resource/2018/
04/DDR4_4Gb_E_die_LRDIMM_Rev1.1_Jun.17.pdf.

[50] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 273–287.

598

MEDAL: Scalable DIMM based Near Data Processing Accelerator for DNA Seeding Algorithm MICRO’19, October 12-16, 2019, Columbus, OH, USA

[51] Synopsys. 2018. Design Complier. https://www.synopsys.com/support/training/
rtl-synthesis/design-compiler-rtl-synthesis.html.

[52] Yatish Turakhia, Gill Bejerano, and William J Dally. 2018. Darwin: A genomics
co-processor provides up to 15,000 x acceleration on long read assembly. In ACM
SIGPLAN Notices, Vol. 53. ACM, 199–213.

[53] Theo Ungerer and Ing Dietmar Fey. 2016. Report on Disruptive Technologies for
years 2020-2030. (2016).

[54] UPMEM. [n. d.]. UPMEM. https://www.upmem.com/use-cases/.
[55] Thiruvengadam Vijayaraghavan, Amit Rajesh, and Karthikeyan Sankaralingam.

2018. MPU-BWM: Accelerating Sequence Alignment. IEEE Computer Architecture

Letters 17, 2 (2018), 179–182.
[56] Jing Zhang, Heshan Lin, Pavan Balaji, and Wu-chun Feng. 2013. Optimizing

Burrows-Wheeler transform-based sequence alignment on multicore architec-
tures. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM Inter-
national Symposium on. IEEE, 377–384.

[57] Vasileios Zois, Divya Gupta, Vassilis J Tsotras, Walid A Najjar, and Jean-Francois
Roy. 2018. Massively parallel skyline computation for processing-in-memory
architectures. In Proceedings of the 27th International Conference on Parallel Ar-
chitectures and Compilation Techniques. ACM, 1.

599

