
0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 1

DLUX: a LUT-based Near-Bank Accelerator for
Data Center Deep Learning Training Workloads
Peng Gu, Xinfeng Xie, Member, IEEE, Shuangchen Li, Dimin Niu, Hongzhong Zheng, Member, IEEE,

Krishna T. Malladi, Member, IEEE, and Yuan Xie, Fellow, IEEE,

Abstract—The frequent data movement between the processor
and the memory has become a severe performance bottleneck
for deep neural network (DNN) training workloads in data
centers. To solve this off-chip memory access challenge, the 3D
stacking processing-in-memory (3D-PIM) architecture provides
a viable solution. However, existing 3D-PIM designs for DNN
training suffer from the limited memory bandwidth in the
base logic die. To overcome this obstacle, integrating the DNN
related logic near each memory bank becomes a promising yet
challenging solution, since naively implementing the floating-
point (FP) unit and the cache in the memory die incurs large
area overhead. To address these problems, we propose DLUX,
a high performance and energy-efficient 3D-PIM accelerator
for DNN training using the near-bank architecture. From the
hardware perspective, to support the FP multiplier with low
area overhead, an in-DRAM lookup table (LUT) mechanism is
invented. Then, we propose to use a small scratchpad buffer
together with a lightweight transformation engine to exploit the
locality and enable flexible data layout without the expensive
cache. From the software aspect, we split the mapping/scheduling
tasks during DNN training into intra-layer and inter-layer
phases. During the intra-layer phase, to maximize data reuse
in the LUT buffer and the scratchpad buffer, achieve high
concurrency, and reduce data movement among banks, a 3D-
PIM customized loop tiling technique is adopted. During the
inter-layer phase, efficient techniques are invented to ensure the
input-output data layout consistency and realize the forward-
backward layout transposition. Experiment results show that
DLUX can reduce FP32 multiplier area overhead by 60% against
the direct implementation. Compared with a Tesla V100 GPU,
end-to-end evaluations show that DLUX can provide on average
6.3× speedup and 42× energy efficiency improvement.

Index Terms—Near Data Processing, Deep Neural Network,
3D Stacking Circuit, DRAM

I. INTRODUCTION

DEEP Neural Network (DNN) is playing an increasingly
important role in modern data center workloads [1], [2],

and these DNN tasks require frequent and time-consuming
training. Developing fast and energy-efficient accelerators for
these training tasks is necessary yet challenging, since they
need both high memory capacity and bandwidth. First, the

Manuscript received XX XX, XXXX; revised XX XX, XXXX; accepted
XX, XX, XXXX. Date of publication XX, XX, XXXX. This work was
supported in part by the NSF 1719160, 1725447, and 1730309, and in part
by the Samsung Semiconductor, Inc.

P. Gu, X. Xie, and Y. Xie are with the Department of Electrical and
Computer Engineering, University of California, Santa Barbara, CA, 93106
USA e-mail: (yuanxie@ucsb.edu).

S. Li, D. Niu, and H. Zheng are with Alibaba DAMO Academy, Sunnyvale,
CA, 94085, USA e-mail: (hongzhong.zheng@alibaba-inc.com). D. Niu and H.
Zheng were previously with Samsung Semiconductor, San Jose, 95134 USA.

K. Malladi is with Samsung Semiconductor, San Jose, 95134 USA e-
mail:(k.tej@samsung.com).

large capacity requirement comes from not only the training
weights but also the intermediate data and gradients, since they
need to be stored and accessed during every iteration of the
training process. For example, with a relatively small batchsize
of 4, DeepSpeech2 requires 6GB memory, over 75% of which
belongs to intermediate data and gradients [3]. Second, many
of these DNN training workloads are bandwidth-intensive,
since they consist of operations with medium to low arithmetic
density. Therefore, with the trend of larger model size and
growing dataset, limited off-chip bandwidth poses a severe per-
formance challenge on compute-centric accelerators. To show
the bandwidth-bound behavior of these workloads, we conduct
a case study on a Tesla V100 GPU [4] using 6 representative
DNN training data center workloads [5]–[7], including tasks
of machine translation, speech recognition, recommendation,
text summarization, encoder, and compression. We observe
that the profiled workloads spend a significant amount of
time (40% ∼ 100%) executing bandwidth-bound operations
on GPU, according to the roofline model [8]. Further details
about the profiling results are shown in Sec.II.

To meet the bandwidth demands for DNN training, the
3D stacking processing-in-memory (3D-PIM) architecture [9]–
[13] has shown more promising potential than the current
compute-centric architecture [4], [14], [15]. However, existing
3D-PIM solutions for DNN training cannot deliver competitive
performance, due to the limited memory bandwidth available
on the base logic die. For example, one heterogeneous 3D-
PIM accelerator [9] only provides ∼ 10% speedup compared
with GTX 1080Ti GPU, since its peak memory bandwidth
(480GB/s adopting HMC 2.0 [16] configuration) only im-
proves 50% compared with GDDR5X (320GB/s). The per-
formance gap roots in the bandwidth restriction that memory
accesses from the base die still need to use the limited number
of Through-Silicon-Vias (TSVs) (maximum 1024 TSVs per
cube). Adding the TSV number to increase memory bandwidth
will suffer from both large area overhead and reduced energy-
efficiency, since TSVs already occupy ∼ 20% area in the
current 3D stacking memory [17]. Even worse, a previous
work [18] shows that the in-cube data movement consumes
more than 60% of the total access energy.

To abandon these restrictions, a promising approach is to
closely integrate the DNN training logic with each memory
bank. This near-bank architecture [19] enables computation
resources and memory bandwidth to scale-up synergistically
with increasing 3D stacking layers, significantly reduces the
in-cube data movement, and allows the DNN training logic
to fully utilize bank-level bandwidth without changing the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 2

DRAM timing. Nevertheless, the low-area overhead hardware
design in memory process [20] and the associated software
mapping and scheduling techniques remain key challenges to
be addressed. From the hardware perspective, a lightweight
floating point (FP) unit design is required, and the expensive
cache needs to be replaced without performance penalty.
From the software perspective, efficient algorithms need to be
invented to increase the utilization of the proposed FP unit,
and novel mapping and scheduling schemes are required to
hide the latency and allow flexible data layouts.

The goal of this work is to propose a low hardware overhead
near-bank 3D-PIM architecture, DLUX, for DNN training
acceleration providing high FP performance. We propose both
the hardware design and the software mapping/scheduling
techniques to solve the challenges mentioned above. From the
hardware perspective, to support efficient FP arithmetic with
low area overhead, we propose to use an in-DRAM lookup
table (LUT), which trades memory capacity for computing
performance. In order to reduce the lookup overhead, we
adapt a hierarchical LUT structure, where the full LUT table
is stored in a DRAM bank but the LUT entries are cached
in a small buffer in each bank’s peripheral. To reduce the
cache overhead, we use a simple scratchpad memory buffer
for data reuse, and a transformation unit to assist flexible data
layouts. From the software aspect, we solve the mapping and
scheduling problems from both the intra-layer phase and the
inter-layer phase. During the intra-layer phase, to reduce LUT
fetching overhead, LUT entries in the LUT buffer are reused
a number of times before reloading. Then, to achieve high
concurrency and low data movement among banks, the input
data parallelism and the intermediate result stationary scheme
are used. During the inter-layer phase, transparent and low
overhead techniques are invented to ensure input-output layout
consistency and forward-backward layout transpose.

Our specific contributions are listed as follows.
• We propose a near-bank architecture, DLUX, for DNN

training acceleration with both high performance and low
hardware overhead.

• We demonstrate the DLUX design, with the highlight of
the in-DRAM hierarchical LUT for high-performance FP
computing, efficient communication using shared data bus
and lightweight support for data transformation.

• We present the DLUX software design. The intra-layer
mapping/scheduling improves utilization, concurrency while
minimizing data movement, and the inter-layer data trans-
formation ensures layout consistency in dataflow processing.

• We evaluate DLUX and compare it with the Tesla V100
GPU. The results shows DLUX provides on average 6.3×
end-to-end speedup and 42× energy-efficiency improve-
ment on representative data center training workloads.

II. BACKGROUND

a) The DNN training data flow: The DNN training
process is very memory demanding, and can be abstracted
as a data flow graph shown in Fig.1, represented as (a) inter-
layer and (b) intra-layer data flow. For the inter-layer data flow,
each iteration will feed the input data with a certain batchsize
into the network, propagate the intermediate results of each

Fig. 1. Typical data flow and operations in DNN training. (a) Inter-layer
data flow. (b) Intra-layer data flow for a fully-connected layer.

Application Type BatchSize DataSet Notation
Recommendation MLP 1000 MovieLens Recommendation [21]
Speech Recognition RNN 32 TIMIT DeepSpeech [22]
Translation Attention 4096 WMT Transformer [23]
Text Summarization RNN 4 Gigaword TextSum [24]
Sentence Encoder RNN 128 BookCorpus SkipThoughts [25]
Compression RNN 4 Kodak EntropyCoder [26]

TABLE I
BENCHMARK SETTING.

layer (Yi, Yi+1), calculate the loss at the final layer, and then
back-propagate the gradient (dXi, dXi+1) through all layers.
For the intra-layer data flow, the backward pass (OP2, 3, 4)
requires more computation than the forward pass (OP1). Even
worse, it needs to store the intermediate results (X), which
significantly increases the memory overhead. Also, the layout
transformation is required, since the layouts of the input and
output tensor need to be consistent (Yi and Xi+1), and the
backward pass requires transposed format (XT ,WT).

b) A case study for DNN training workloads: We con-
duct a detailed profiling of representative workloads in Table.I.
We use tensorflow [27] to record the computation instruc-
tions, the memory access count, and the execution time of
every operations in the benchmarks. First, to analyze the
memory-bound behavior, we accumulate the execution time
of operations with arithmetic density lower than GPU per-
formance/bandwidth ratio (17.5FLOP/Byte) as shown on
the left of Fig.2. Second, to understand the performance
bottleneck for each class of operations, we derive the trend of
accumulated percentage of time as arithmetic density increases
for each class on the right of Fig.2. To plot a data point
with arithmetic density Xdensity in the trend line, we first
sum the execution time of all operations of that class whose
arithmetic density is lower than Xdensity. Then, we divide
the added time by the total execution time of that application
to calculate the accumulated percentage of time for that data
point. For the results, we first find that these workloads spend
a large amount of time (40% ∼ 100%) executing bandwidth-
bound operations on GPU. More detailed analysis shows that
except for General Matrix Multiplication (GEMM), other
kernels exhibit memory bound behaviors (plateau occurs left
of the GPU Perf/BW ratio according to the arithmetic density
distribution). For GEMM kernels, significant portion of time
also shows memory bound behaviours. We also discover that
most of the training execution time (> 95%) is dominated by 4
categories of kernels: GEMM , Elementwise (e.g., elemen-
twise addition), Reduction (e.g., tensor reduction along one
axis), and DataManipulation (e.g., tensor concatenation).

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 3

Fig. 2. Left: the percentage of time for operations that have lower arithmetic density than GPU performance/bandwidth ratio. Right: accumulated
percentage of time distribution according to arithmetic density for different classes of operations.

c) 3D Stacking Memory: Though with different inter-
faces, the architectures in various 3D memory standards are
similar. One memory cube contains a base logic die and
multiple stacking DRAM dies. The logic die carries the control
circuit and the physical layer (PHY). In one DRAM die, the
subarray is the minimal DRAM cell array with the dedicated
local decoder and the sense amplifier. A group of subarrays
that share the global data lines form a bank. A bank has a
row buffer to support data burst and provides spatial locality.
A group of banks in the same DRAM die forms a bank group
and are linked by shared data buses. Several bank groups in
different DRAM dies are connected with Through Silicon Vias
(TSVs) to controllers in the base logic die, forming a vertical
vault. Note that DLUX is based on general 3D memory and
is adoptable for both High Bandwidth Memory (HBM) [28]
and Hybrid Memory Cube (HMC) [29] architecture.

III. CHALLENGES FOR DLUX DESIGN

a) Area Overhead in the DRAM die: The 3D-PIM’s
performance challenge is aggravated by the requirement for
area-expensive FP units (1.6× larger than an integer unit
for 32-bit Multiply–Accumulate (MAC) in 45nm [30], [31]).
As mentioned in Sec.I, to alleviate the bandwidth bottleneck
of the base die logic integration, a near-bank design places
logic inside the DRAM die. However, building complex logic
inside the DRAM die results in significant area overhead
due to specialized DRAM technology (as high as 80% [20]
overhead). In Sec.IV, DLUX overcomes this area-constrained
performance challenge by using a configurable DRAM-based
LUT as the extra computing resource.

b) Slow DRAM-based LUT: Using the DRAM as a LUT
for computing is non-trivial for achieving high performance.
Different from sub-ns fast SRAM-based LUT, DRAM row
access latency is tRC (e.g., 48ns [28]). With every DRAM
bank serving as a LUT, the extra performance gain from LUTs
of a typical 8-die memory cube is marginal 0.01TFLOPS.
In Sec.IV-B, DLUX overcomes this slow LUT challenge by
introducing a buffer for the LUT and the software scheduling
method to improve its data reuse.

c) Data Movement: A compute-centric accelerator em-
ploys customized on-chip interconnect network for efficient
inter-node data communication. However, PIM is based on the
3D memory, which only has shared buses for interconnecting.
Although the shared data buses are wide thanks to 3D integra-
tion, operations requiring inter-bank communication will incur
long latency due to shared bus data congestion. In Sec.IV-C,
DLUX leverages this shared data bus structure for bankgroup-
local and vault-local data movement.

d) Requirement for Layout Transformation: As shown
in Fig.1 (b), since the input-output layout needs to be consis-
tent between DNN layers, and the forward-backward layout
needs to be properly transposed, potential data movement
introduced by the layout transformation is time and energy
consuming. Two unique features of PIM make this problem
more challenging. First, unlike unified memory abstraction
for compute-centric architecture, PIM adopts a distributed
memory model, where data are partitioned so that the majority
of the data feeding for compute units come from local banks.
Improper data partitioning will introduce unnecessary inter-
bank data movement, such as all-to-all broadcasting during
data transpose. Second, PIM lacks a complex cache design
which can be effective in hiding memory latency and allowing
flexible memory access patterns. If data placement in the local
bank results in poor spatial locality in row buffer, frequent
activations of different rows will result in inefficient intra-
bank data movement. DLUX first adds light weight logic in
Sec.IV-D, and then uses layout transformation, locality-aware
mapping, and PIM-friendly partial transpose format in Sec.V-B
to address this challenge.

IV. DLUX ARCHITECTURE

A. Overall Architecture

The DLUX design highlights the near-bank architecture
with efficient supports for the LUT-based FP operations, the
hierarchical shared data buses for efficient data communica-
tion, and the lightweight hardware for layout transformation.
To fulfill these features, DLUX adopts a scalable architecture

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 4

Fig. 3. DLUX architecture overview: (a) a cube, (b) a vault, and (c) a processing engine.

composed of cubes, vaults, processing engine groups (PEGs),
and processing engines (PEs), as shown in Fig.3. A DLUX
cube consists of 8 processing-in-memory (PIM) memory dies
on the top of a base logic die, connected by TSVs. Each cube
is further divided into 16 vertical vaults, each of which owns
64b TSVs spreading across 8 layers, as shown in Fig.3(a).
Fig.3(b) zooms into a vault. The base logic die of a vault
contains a network interface (NI) for inter-vaults and inter-
cube data communication, a simple programmable ARM core
to provide friendly user interface and issue DLUX instructions,
a hardwired controller, and a buffer. For the other PIM dies
in the vault, each die contains one PEG, which executes
kernels and communicates with other PEGs in the same vault
through the shared TSVs. A PEG contains 4 PEs. They are all
connected to a 256b global I/O (GIO) bus.

Fig.3(c) further zooms into a PE. The PE employs the near-
bank architecture, in which computing logics are in the bank
peripheral region, without any modification to the memory
array. Such architecture fully exploits the high bank-level
bandwidth, while remaining manufacture friendly [32]–[34].

In the bank peripheral region, we design computing units,
control units, data paths, and a scratchpad memory. The
computing units include matrix-vector-multiply (MVM) units,
vector units, and a permutation unit. The control units include
a controller and an address translator. The data paths include
the links connecting (1) the computing units and the scratchpad
memory; (2) the scratchpad memory and the bank/GIO; (3)
the bank and the MVM units/GIO. We double the data
bus CAS width and the bank-level row buffer to reduce
communication overhead between the bank and other units.
The scratchpad memory supports both the computation units
and the communication and layout transformation operations.

B. Computation Support

a) LUT-based Multiplication: The key idea is to increase
the memory-side FP performance with a limited area budget
by leveraging part of the DRAM memory for computing, i.e.,
using DRAM as a LUT for the FP arithmetic implementa-
tion. However, there are two challenges: (1) the exponential
memory capacity demand, and (2) the DRAM’s long latency.

To overcome the large LUT capacity challenge, instead of
looking up the whole FP32-MAC operation directly (298Byte
memory), we only lookup the most area consuming part of
the arithmetic. We find that a FP32-MUL’s area is 1.8×
larger than that of a FP32-ADD [35]. Inside the FP32-MUL,

the significand MUL contributes ∼ 87% of the total area.
Therefore, we only use LUT for the significand MUL, while
implementing other parts with digital logic circuits. Further-
more, even in the 23b significand MUL, we only conduct LUT
for the partial product of a 12b×4b MUL, while adding partial
product adders in digital circuits. To overcome DRAM’s long
latency challenge, we propose a hierarchical and buffered LUT
architecture. We first lookup the first operand from the DRAM
bank, and store the partial LUT results in the faster SRAM
based buffers. Then, we lookup the second operand from the
faster buffers. DLUX scheduling will optimize data reuse from
the SRAM buffer (i.e., the first operand stays unchanged). Note
that the SRAM buffer only stores all possible results given a
known first operand, so it is much more efficient than the all-
logic FP multiplier.

Fig. 4. Hierarchical lookup table based FP32 multiplier design.

Fig.4 shows the detailed design. As illustrated, we only
use the LUT for partial product results in the significand
MUL, i.e., Sig-A×Sig-B. Others including the addition of
partial product in the significand MUL, the exponent addition,
and the normalization etc. are implemented with digital logic
circuits. All the computations shown in Fig.4 happen in the
DRAM layer in each PE, so there will not be inter-layer
data movement. The hierarchical LUT architecture has the full
LUT table stored in the dense but slow DRAM bank, while
having the lightweight but fast SRAM buffers allocated outside
of each bank. The first operand (Sig-A) is used as the row
address of the DRAM bank (after a simple pre-loaded address
translation) to fetch one entry to the SRAM LUT buffer, and
the second operand (Sig-B) is used as the column address of
the LUT buffer to get a partial product result. These partial
results are then summed up by the digital adders.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 5

Fig. 5. Matrix-vector-multiply (MVM) unit design.

b) Matrix-Vector-Multiply (MVM): We build the MVM
unit using the lookup table based floating point multiplier
(LUT-FPMult), while exploiting the faster LUT buffer, i.e.,
maximizing the reuse of the first operand. The design and the
working flow is shown in Fig.5. We denote the input vector
as A[1 : k] and the input matrix as B[1 : k, 1 : n]. We assign
A as the first operand to lookup the full LUT table inside
DRAM (like Sig-A in Fig.4) and B as the second operand to
lookup the LUT buffer. The MVM working flow is divided
into five steps: 1 A[k : 1] is fetched from the local bank or
the broadcast data from the GIO, to the LUT index buffer. 2
Values from the LUT index buffer are translated to fetch the
corresponding entries of the full lookup table in the DRAM
bank. The results are stored in the LUT buffers in each LUT-
FPMult. 3 B matrix is fetched from local bank to the input
vector buffers. 4 Each B[i, j] decodes the LUT buffer to
complete the FP32-MUL computing. 5 The results will be
summed (

∑k
i=1 A[i] ·B[i, j]) by the adder tree. Such working

flow maximizes the LUT buffer locality. Each LUT buffer
result is reused n times, since each A[i] will be multiplied
with all values in vector B[i, :]. We further optimize the
performance by hiding latency during data fetching. We place
the full LUT table and B matrix data into different subarrays
of the same bank, and employ subarray-level parallelism [36]
to overlap the time of 2 and 3 .

c) Vectorized Computing and SFU: The vector unit con-
tains an array of FP32-ADD, FP32-MUL, and other simple
logical units implemented by digital logic circuits. It has two
functions. First, it accumulates and updates the partial results
stored in the scratchpad memory with new output values
from the MVM units. Second, it performs simple elementwise
operations, including addition and logical operations (e.g.,
min) for DNN layers such as ReLu. To support more complex
non-linear functions, we add one SFU (Special Function Unit)
per PE. This unit enables frequently used non-linear activation
functions in training, such as sigmoid and tanh.

d) Permutation Unit: The permutation unit consists of
multiple cyclic-shift FIFOs. The input is fed column-wise to
each FIFO, and the output is fetched row-wise where one FIFO
contributes one element in the row. The data transposition is
scheduled after the completion of a layer and is overlapped
with the computation of the next layer.

C. Communication Support

An efficient communication scheme is critical for DLUX’s
performance and energy efficiency. From the hardware per-

spective, DLUX adopts a distributed memory model owing
to its PIM nature, where accesses to non-local addresses
will introduce expensive inter-PE data movement. From the
application perspective, many important DNN kernels incur
significant communication traffic due to the requirement for
the scattering (e.g., data-sharing) and the gathering (e.g.,
reduction) computation patterns.

To meet these requirements, we propose to fully exploit and
reuse the already existing hierarchically shared bus architec-
ture in 3D memory for data movement. First, 4 PEs in the same
PEG share 256b GIO, which is used for the inter-PE commu-
nication. Second, 8 PEGs in the same vault share 64b TSVs,
which are used for the inter-PEG communication. Third, 16
vaults communicate through the on-chip network, which is
used for the inter-vault communication. Last, each cube has
a full-duplex serial link with peak bandwidth 80GB/s [16],
which is used for the inter-cube communication.

Fig. 6. Hierarchical interconnects to perform reduction operations: (a)
reduction pattern, (b) inter-PE reduction, (c) inter-PEG reduction, (d)
inter-vault and inter-cube reduction.

Fig.6 illustrates an example of using the hierarchical inter-
connects to perform a tensor reduction operation. Fig.6 (a)
shows the reduction pattern among four tensors, where each
hardware unit contains one tensor. For load balancing, each
tensor is partitioned into four parts with equal size marked
as p1 to p4, and each unit is responsible for reduction of a
single part among the four tensors. For example, Unit1 will
collect all p1 parts from the other three units and perform
local accumulation. Fig.6 (b)-(d) shows the cases when the
reduction is at PE-level, PEG-level, and vault/cube-level. All
cases need four passes for the 4-tensor reduction. The blue
and the green arrows show the examples of the first two
passes. In Fig.6 (b), the PE-level reduction, each PE sends
corresponding data to other PEs through the shared 256b GIO,
one after another. In Fig.6 (c), the inter-PEG reduction, the
shared TSV bus is used for data movement. In Fig.6 (d),
since data paths involved in high-level nodes (e.g., inter-cube)
always have lower bandwidth and higher data movement costs
than those in the low-level nodes (e.g., inter-vault), low-level
data communication is always granted with a higher priority.

D. Layout Transformation Support

Customized memory layout is important when attempting to
increase PE’s performance and utilization. Lacking complex
cache hierarchy, DLUX’s performance heavily relies on the
memory coalescing and spatial locality in the bank row buffer.
To guarantee the layout for each data structure during every

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 6

phase of the data flow, data transformations are needed, which
is efficiently supported by permutation unit (Sec.IV-B) in
each PE. First, the input data is read to scratchpad memory,
and streamed into the permutation unit using a row major
order. Second, the column reorder operation is performed
by selecting a certain cyclic first-in-first-out (FIFO) queue to
write each input row. For matrix transpose, the cyclic FIFO
is selected from left to right. Third, the row reorder operation
is performed by cyclically moving the FIFO, so that elements
in the same row can be shuffled. Lastly, all FIFOs will output
its elements in sequence, and each time a permuted row is
acquired and written to scratchpad memory.

Fig. 7. GEMM mapping scheme loop formulation.

V. DLUX MAPPING AND SCHEDULING

A. Intra-layer Partitioning and Scheduling

We first focus on the most important general matrix multi-
plication (GEMM) kernel, which is followed by the description
of supporting other kernels, with a detailed example of the
batch normalization (BN) kernel.

1) General Matrix Multiplication (GEMM): The GEMM
kernel is the most important kernel, because it is used to
compute many major DNN layers, such as the fully-connected
layer, the recurrent layer, and the convolutional layer [37],
and hence is the time-dominating kernel for some DNN tasks
(40%−90% as shown in Fig.2). Comprehensive optimizations
on mapping and scheduling are introduced as follows.

a) Problem Formulation with Nested Loop: GEMM can
be formulated as a three-level nested loop. We denote the input
matrix as X of size K · N , the weight matrix as W of size
M ·K, and the output matrix as Y of size M ·N . We apply
two-level loop tiling to the original loop nest, as shown on
the left side of Fig.7 (a). For the first tiling, we denote it as
the outer loops, which partition the M , N , and K dimensions
into Mblk, Nblk, and Kblk, respectively. We also denote tiles
from these outer loops as blocks, to distinguish from these in
the second tiling. For the second tiling, we denote it as the
inner loops, and it further partitions the Mblk, Nblk, and
Kblk dimensions into Mtile, Ntile, and Ktile, respectively.
The loop body is the computation primitive calculating the
matrix multiplication of WMtile·Ktile ×XKtile·Ntile.

b) Outer Loop Optimization: Spatial Partition to In-
crease Concurrency: We use the outer loop tiling for spatial
partition, i.e., we partition the input (X) or weight (W) matrix
into blocks and distribute them to different PEs.

First, we explain how to partition, i.e., to determine the
value of Mblk, Nblk, and Kblk. It is a 3-step decision. Step-
1: we decide to partition either M or N , i.e., setting either
Mblk = M or Nblk = N . We do not partition both because
we want to minimize the data movement. Allowing only one
partition means that only one input matrix (either X or W)
is required to be broadcast across all spatial partitions. The
other input matrix with the spatial parallelism can be stationary
in their local banks during the entire process of training, so
that the data movement is minimized. We choose the larger
one from M and N to partition in order to maximize spatial
concurrency. Step-2: we determine the value of Nblk (or Mblk
if selecting M to partition in Step-1). This partition is not
straightforward. On the one hand, we want Nblk (or Mblk)
as small as possible, in order to maximize spatial parallelism.
On the other hand, we want the Nblk to be large enough to
fully utilized the hardware, e.g., scratchpad memory, in a PE
, so that each block runs faster. The overall performance is
then an overall consideration of both the parallelism and the
single block performance. We solve the problem by building
an analytical model with the objective of maximizing the
overall performance. Step-3: we determine the K partition,
i.e., the value of Kblk. We find the maximal Kblk that ensures
every PE has at least one block to work on.

Second, we explain the mapping. The partition of M or N is
mapped to the cube and then to the vault, which is referred to
as high-level hardware mapping. The partition of K is mapped
to PEG and PE, as the low-level hardware mapping. Each
block from the tiling of the outer loop is mapped to one PE.

c) Inner Loop Optimization: Temporal Scheduling to
Increase Reuse: The inner loop tiling further partitions the
input matrix block into tiles to ensure all the tiles run on the
same PE but in different time frame.

First, we explain the partition, i.e., the selection of Mtile,
Ntile, and Ktile. All these parameters are fixed according to
the configuration. We assign the input tile size to be the same
as the input tensor size of an MVM unit. Therefore, Mtile is
set to 1 since MVM takes 1-D vector as the input. Ntile and
Ktile are set as the weight and the height of the MVM unit.

Second, we describe the scheduling. In order to improve
temporal data reuse, we need to fully exploit the scratchpad
memory. For this reason, we apply another level of tiling inside
the inner loop for the N dimension, as shown in the right
side of Fig.7. We assign this tile size, reuse len, according
to the capacity of the scratchpad memory. The loop order
represents the scheduling, i.e., which tile runs first. We apply
loop permutation so that we can first compute the tiles within
the same reuse len, which means all their results can fit in the
scratchpad. The second loop we schedule is the K dimension
with the purpose of applying output stationary, so that all the
results can be accumulated by only accessing the scratchpad
memory, eliminating the use of the slow DRAM. The third
loop in the schedule is the N -loop and the last one is the
M -loop. We set the M -loop last because we want the vector
input of the MVM unit remain unchanged (see Sec.IV-B for
detail reasons) so that LUT loading overhead is reduced and
the LUT latency is hidden by buffer LUTs.

Finally, we describe an example shown in Fig.8 (a). The

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 7

brown arrows indicate the running order of the tiles, i.e.,
the scheduling. Fig.8 (b) further explains the working flow.
In Step- 1 , we read a vector of Tile W in from the GIO.
The vector initializes the LUT buffer and will remain there
until every related computation is done. In Step- 2 , we read
the matrix Tile X from the local DRAM bank. Note that
we optimize the data layout in order to maximize DRAM
row buffer hit when access X by Tile x. In Step- 3 , we
get the result vector Tile Y from the MVM unit and ap-
ply accumulations (if necessary) with previous partial results
stored in the scratchpad memory using the vector unit. The
accumulated result vector is then updated and stored to the
scratchpad memory. In Step- 4 , when K-loop ends and we
get the final result, we write it back to the DRAM bank.

Vector Unit

MVM

M
blk

Nblk Kblk

Ntile Ktile

Kblk

Tile_X

(a)

Data consumed
(produced) direction

Tile_Y Tile_W

According to Fig.5,
Mtile=1, Ntile=n,
Ktile=k

Bank

MVM

Tile_X a memory row

Tile_W

Vector Unit
Tile_Y Processing Engine (PE)

(b)

2

3

1
4

Scratchpad

Tile_Y Tile_W

reuse_len

M
tile

X 𝑁
𝑈
𝑀
ெ
௏
ெ 𝑁
𝑈
𝑀
ெ
௏
ெ

Fig. 8. Inner loop mapping. (a) Data partitioning within a PE. (b)
Computation flow and temporal data reuse scheme based on (a).

2) Other Kernels: DLUX can also efficiently supports
other kernels, including activation, elementwise, and batch
normalization. Activation kernels (e.g., ReLu) are fused with
the GEMM kernel, supported by vector units. Elementwise
kernels are also supported by vector units, but require reading
data from the local bank (with potential support of permutation
unit) into the scratchpad memory before computing. For
batch normalization, the mean, variance, and normalization are
calculated using the MVM unit and Vector unit, with the help
of hierarchical interconnects to perform reduction and broad-
casting, and SFU to perform square root and inversion. For
Resnet50’s FusedBatchnorm, DLUX shows 13.13× speedup
an 97.14% energy savings over one V100 GPU.

B. Inter-layer Layout Transformation

Although intra-layer mapping can achieve maximal per-
formance and minimal data movement, inter-layer operation
efficiency can be challenging for DLUX due to specialized
layout requirements of each DNN layer, and the distributed
memory model intrinsic to PIM architecture. We solve that
issue by maintaining the input-output layout consistency and
the forward-backward layout consistency.

1) Input-Output Layout Consistency: The coalesced data
layout is the key to improve the spatial and temporal reuse.
To maintain the coalesced layout during the layer-by-layer
computation, we need to keep each layer’s input and output
data layout consistent, considering both the matrix layout
transposing and the data partition.

The matrix layout transposing is heavily demanded in the
training process, as shown in Fig.1. Before writing back the

result of the previous layer, we apply the matrix transpose if
necessary, so that the next layer can use the previous result
as it is. The transposing is done on-the-fly and locally by the
permutation unit in each PE. Here, the data transformation can
be local since we only require the conversion between row-
major data fetching to column-major data fetching without
involving inter-PE traffic. Therefore, there is insignificant data
movement energy overhead and the latency can be hidden by
layer computations.

We also keep the input/output data layout consistent in terms
of data partition across PEs. The tensor reduction in Fig.6 (a)
is a good example. The four input tensors are partitioned
across four units (PE), so we want to partition and store
the output tensor also in four units, accordingly. Otherwise,
if we apply a different data partition for the result tensor,
e.g., storing the whole tensor into one unit without partition,
the next layer which takes the result tensor as the input can
only use one unit for computing, leaving the other three
underutilized. To keep the data partition consistent, we control
the data communication destination addresses like the cases in
Fig.6 (b)-(d) when storing the data.

2) Forward-Backward Layout Transpose: Layout transpose
of the same tensor is required for the backward pass. A naive
transpose scheme will introduce all-to-all broadcasting traffic.

We propose a partial transpose layout which involves no
inter-PE data movement. First, instead of moving data blocks
from forward mapping PE to backward mapping PE, we only
change the index of the block stored in local PE. For example,
given a PE associated with block index (i, j) in the forward
pass, the block index will be transposed to (j, i). Then, the
PE-level data transpose is performed by the permutation unit
introduced in Sec.IV-D, where continuous row coalescing be-
comes continuous column coalescing. Here, coalescing means
data is stored in adjacent memory locations in DRAM so
access locality is maximal. This transpose operation can be
overlapped with other operations. Also, as the same input data
tile is read multiple times from the local bank during one inner
loop calculation, it is only transposed once for the last round,
which incurs very low time overhead.

VI. SYSTEM INTEGRATION

We position DLUX as a standalone accelerator, not as
the system memory with computing capability. Though using
the PIM architecture, the DRAM in DLUX is its local de-
vice/scratchpad memory, instead of part of the system memory.
Therefore, DLUX’s integration scheme is exactly the same
as other accelerators (e.g., GPU). We integrate DLUX to the
system with standard bus such as PCIe. The runtime and driver
on the host machine copies data from the system memory to
the device memory on DLUX, launches the kernels, and finally
copies the data back to the system memory if necessary.

DLUX is designed to be transparent to the user. To this end,
we provide library-based interface. The library is similar to
cuDNN [37] on GPU, which provides well tuned high efficient
binary for most DNN operations. The library is then integrated
to the backend of frameworks such as Tensorflow [27]. In
addition to the library-based interface, we also provide the
instruction set for future extensions.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 8

VII. EXPERIMENTS
A. Experimental Setup

a) Workload: For end-to-end workloads analysis, we
use 6 representative benchmarks as shown in Table.I. These
benchmarks are selected from MLperf [5], Fathom [6] and
NNBench-X [7], and are trained using their default configu-
rations.

b) Hardware Configuration: DLUX adopts 3D-stacking
memory configuration similar to previous HMC-based accel-
erator [9], but additionally, DLUX has the near-bank com-
puting design. The detailed configuration, hardware latency,
and energy settings are shown in Table.II. In addition, the
CAS width per bank for internal data reading is set as 2048
bits, the total number of TSVs per cube is 1024, and the inter-
cube communication uses 4 full-duplex Serializer/Deserializer
(SERDES) links with maximum 30Gb/s per link bandwidth.

c) Evaluation Methods: We develop an in-house simula-
tor adapted from ramulator [38] based on the key architecture
and timing parameters in Table.II. DLUX is designed to run
at a clock frequency of 1GHz under 22nm technology node.
We use cacti-3DD [39] to evaluate the inter-PE interconnects,
TSVs, and the 3D DRAM bank access latency and energy. The
energy, performance, and area of the scratchpad memory and
the SRAM LUT is also simulated by cacti-3DD. The base
logic die and the SERDES energy is set based on previous
near data processing work [40]. For an FP unit evaluation
in the MVM unit and the vector unit, we use an open-
source tool [35] to generate VHDL code for various FP32
arithmetic and logic units. We also implement RTL codes for
the DLUX controller, address translation unit, and permutation
unit. These hardware components are synthesized by design
compiler considering DRAM process overhead [32] to derive
performance, power, and area results. For the GPU evaluation,
the baseline DNN training performance is derived from Ten-
sorflow profiling tool and nvprof , and the power information
is sampled using nvidia-smi. When measuring a kernel, we
disable all other tasks on the target GPU to isolate the power
consumption number. Also, we acquire the steady state of
the power consumption for the kernel by running it multiple
times and sample the plateau area to ensure accuracy. Because
ScaleDeep [41] simulator is not open-source, we optimistically
estimate its performance using an analytical model based on
the roofline model [8], by using its peak computing throughput
(comp), peak memory bandwidth (bw), and average hardware
utilization (util) provided in the paper. For each operator in a
given benchmark, we use its arithmetic density to determine
whether it is compute-bound or memory-bound in the roofline
model. The operator information contained in a computation
graph is generated by Tensorflow profiling. For a compute-
bound operator, we divide its total operations by the sustained
computing throughput (comp×util) to get its execution time.
For a memory-bound operator, we divide its total memory
footprint by the sustained memory bandwidth (bw × util) to
get its execution time. The end-to-end time of a benchmark
on ScaleDeep is the accumulation of all its operator time.
B. Performance, Bandwidth, and Area

a) Performance Analysis: For fair comparison assuming
a single compute-node, in the end-to-end analysis, we choose

Parameter Names Configuration
Cubes / Vaults cube / PEGs vault 1 / 16 / 8
PEs PEG / MVMs / Ktile / Ntile 4 / 2 / 4 / 4
Bank / RowBuffer / Scratchpad (Kb) 131072 / 16 / 32
tCK/tRCD/tCCD/tRTP/tRP/tRAS (ns) 1 / 14 / 4 / 4 / 15 / 33
RD,WR/PRE/ACT/Spad (nJ/access) 0.224 / 0.507 / 0.521 / 0.005
MVM / VU / PU (pJ/access) 139.9 / 3.6 / 64.3
interPE/TSV/SERDES (pJ/bit) 0.017 / 4.64 / 4.50

TABLE II
DLUX HARDWARE CONFIGURATION PARAMETERS.

one DLUX cube with 8 PIM layers. DLUX-1 represents
naively implementing FP32 logic without LUT optimization,
so the number of FP units is halved under the same area
constraint. DLUX-2 represents removing cache without ap-
plying the layout transformation scheme, so extra latency is
added due to increased row activation number for sub-optimal
access locality. DLUX-3 incorporates both LUT optimization
and layout transformation scheme. One Nvidia V100 [4] GPU
is used as the performance baseline, and one ScaleDeep [41]
FcLayer chip is used as the state-of-the-art DNN training
accelerator baseline. During the simulation process, we acquire
the entire computation graph of the workload, including kernel
types, input/output shapes, and total execution time on a
GPU. Then, we evaluate the currently supported kernels on
ScaleDeep and DLUX (more than 98% of total execution time
for most benchmarks) and assume the non-supported kernels
have the same execution time as GPU.

Fig.9 shows the end-to-end execution speedup for 6 rep-
resentative data center DNN training workloads. We observe
that on average, one optimized DLUX-3 cube achieves 6.3×
speedup compared to a single V100 GPU, and 2.4× speedup
compared to a single ScaleDeep chip. We further investigate
the time breakdown, and find DLUX accelerates GEMM ,
Elementwise, Reduction, and DataManipulation kernels
w.r.t GPU at 5.8×, 26.5×, 3.3×, and 14.8× respectively.
DLUX can provide significant performance gain for typical
memory-bound kernels (Elementwise and DataMani −
pulation) due to the abundant memory bandwidth provided
by near-bank architecture. DLUX can also provide decent
speedup for compute-intensive (GEMM) and communication
intensive kernels (Reduction). For GEMM , the speedup is
attributed to both the high peak FP performance and the
high utilization enabled by the proposed software mapping
and scheduling techniques. For Reduction, the performance
roots from the utilization of hierarchical data buses in the 3D
memory for efficient data communication.

However, naively implementing near-bank architecture may
result in sub-optimal results. From Fig.9 we can observe that
DLUX-3 can achieve 1.43× and 1.50× speedup compared
with DLUX-1 and DLUX-2, respectively.

We also observe the variation of speedup numbers for
different workloads when compared to ScaleDeep, since each
workload is a mix of different types of kernels, and each type
of kernel takes up varying portions of total execution time and
shows various arithmetic density values. For DeepSpeech and
Transformer, DLUX obtains significant speedup on GEMM
(98% and 65% of total time respectively) with good data
reuse and parallelism. For EntropyCoder, DLUX suffers from
GEMM (60% of total execution time) with inferior LUT data
reuse. For other workloads, since there is not a single time-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 9

Fig. 9. End-to-end execution time and speedup comparison for benchmarks in Table.I.

dominating operation (less than 50% of total execution time),
DLUX provides slightly better speedup w.r.t. ScaleDeep due to
a mix of operations (1.3× on GEMM , 7× on Elementwise,
1.1× on Reduction, 0.7× on DataManipulation).

b) Bandwidth Analysis: We profile the total memory
bandwidth and TSV traffic of DLUX and show the results
in Fig.10. Fig.10 (a) shows that on average, one DLUX cube
can achieve 6TB/s sustained memory bandwidth, which is
∼ 6.6× of one V100 GPU bandwidth. The significantly high
bank-level bandwidth justifies the adoption of near-bank archi-
tecture, which benefits performance for memory bound kernels
and reduces data movement for memory intensive kernels.
This also proves the necessity of integrating computation logic
in the memory die, since by putting the computation units
on base logic die, only 256GB/s peak memory bandwidth
can be achieved, assuming 1 cube. Fig.10 (b) shows that
on average, one DLUX cube can achieve 53GB/s sustained
TSV bandwidth, which equals to 21% utilization assuming
256GB/s peak TSV bandwidth. The high TSV bandwidth
for Recommendation, DeepSpeech, and Transformer proves
the importance of 3D stacking architecture, since different PEs
inside the same vault need to use TSVs.

Fig. 10. (a) Memory bandwidth and improvement w.r.t. GPU. (b) TSV
bandwidth and utilization.

c) Area Analysis: To achieve high performance for com-
pute intensive kernels (GEMM), we need a high perfor-
mance LUT-FPMult. Currently, we equip 32 FP multipliers
(FPMult) per PE, and the proposed LUT-FPMult significantly
reduces this area overhead by 60.6% as shown in Fig.11. (a)
shows that, by replacing area-consuming significand MUL
by the proposed LUT-based design, the total overhead is
greatly reduced. (b) shows the area breakdown of the LUT-
FPMult design, where LUTs takes 35.2% of total area. The
FPMult uses an autogenerated VHDL-code multiplier from
Flopoco [35]. The LUT-FPMult uses the same VHDL-code,
and replaces expensive mantisa-multiplier (∼ 87% of FPMult)

Component Area (mm2) Overhead (%)
MVM Unit (x2) 0.2440 20.02
Vector Unit (x2) 0.1172 9.62

Permutation Unit (x1) 0.0040 0.33
SFU (x1) 0.0140 1.15

Scratchpad (x1) 0.0260 2.12
Full LUT (x1) 0.0095 0.78

Total 0.4146 34.02

TABLE III
THE AREA OF COMPONENTS IN A PE.

with lightweight SRAM-based LUT array (∼ 26.5% of FP-
Mult). We use CACTI-3DD [39] to estimate SRAM LUT’s
area, performance, and power.

Fig. 11. LUT-FPMult area analysis

Using the hardware configuration from Table.II, the area
breakdown of a PE is demonstrated in Table.III. The total
area overhead of a PE (34.02%) is normalized to a DRAM
bank (1.22mm2) under 20nm technology node [17]. Here,
we assume DRAM process with 3 metal layers will double
the area overhead of bank peripheral logic compared to a
normal CMOS process with 8 metal layers [32]. LUT can
help reduce 14.27% total overhead of peripheral, since LUT
can help reduce the normal FPMult overhead of MVM Units
(from 35.06% to 20.02%), but only introduce a small extra full
LUT overhead (0.78%). Using this area overhead number and
assuming one 3D cube has the area footprint of 96mm2 [17],
we estimate the total silicon footprint of one DLUX cube (8
layers) to be ∼ 998mm2. In contrast, one V100 GPU has one
processor die with 815mm2 and four HBM stacks (4 layers),
and the total silicon footprint is 2351mm2. Comparison with
a V100 GPU, one DLUX cube has 65% less silicon footprint.

C. Energy Analysis

From Fig.13 (a), we observe that one DLUX cube on
average improves energy-efficiency (GFLOPS/W) by 42.2×
compared with one V100 GPU. To further understand the
improvement, we profile the detailed energy consumption
numbers and plotted them in Fig.13 (b). The memory access
energy includes bank activation/precharge and access energy.
The data movement energy includes inter-PE, inter-PEG, inter-
vault, and inter-cube energy. The computation energy includes
the energy consumption of MVM units, vector units, SFU,
and permutation unit. The scratchpad energy covers all access

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 10

Fig. 12. (a) Scalability analysis w.r.t the number of cubes. (b) Scalability analysis w.r.t the number of layers.

energy to scratchpad memory. The energy of the controller
and the address translation unit is very small (< 1%), so
it is ignored in the analysis. On average, memory access,
data movement, computation, and scratchpad access consumes
66.1%, 6.3%, 25.2%, and 2.4% of total energy, respectively.
Since the benchmarks we evaluate are memory-intensive, and
DLUX has optimization for data movement reduction, it is
expected that memory access and computation dominate the
energy consumption (over 91.3%).

Fig. 13. (a) Energy-efficiency improvement. (b) Energy breakdown.

DLUX can provide significant energy savings for all bench-
marks, since DLUX can greatly reduce data movement, which
is the major energy overhead for compute-centric architec-
tures [42]. This is shown by the small percentage of energy
spent on data movement (6.3%) for DLUX. This small energy
consumption number is first attributed to the reduction of
data movement of near-bank architecture, since the majority
of the data is streamed from the local bank. Second, DLUX
spatial partitioning and mapping method guarantees minimum
data sharing between different PEs, and DLUX scheduling
techniques ensure that local data reuse is very high for a
PE, so that a remote memory transfer from other PEs is
infrequent. The consistent input-output layout assumptions
and PIM friendly forward-backward transpose format further
reduces inter-layer data movement.

D. Scalability Study

a) Scaling Cube and Layer Number: We study the
scalability of the proposed software partitioning and mapping
techniques by conducting a weak scaling analysis, where each

workload remains unchanged but the number of hardware
components are scaled. As shown in Fig.12, we first keep
the total number of layers per cube unchanged, while scaling
the total cube number from 1 (DLUX-3-1c) to 16 (DLUX-
3-16c) in (a), and then we keep the total number of cubes
unchanged, while scaling the number of layers per cube from
2 (DLUX-3-2h) to 8 (DLUX-3-8h) in (b). For each evaluated
configuration, we also plot the breakdown of the execution
time into four categories of computation kernels as well as
the speedup ratio w.r.t. one V100 GPU.

For the cube scaling results, on average, by doubling the
total cube number, a 1.30× scaling ratio can be achieved. Fur-
ther analysis shows that GEMM , Elementwise, Reduction,
and Datamanipulation kernels can achieve 1.28×, 1.50×,
1.23×, and 1.84× scaling ratio, respectively. For all the
benchmarks, we observe that, when we scale the cube num-
ber, the performance bottleneck will gradually become either
GEMM or Reduction, which all have low scaling ratio.
The reason is that Elementwise and Datamanipulation
kernels have abundant parallelism and simple data access and
communication patterns, so it is relatively simple to scale them
by adding more cubes. For Reduction kernels, depending on
whether the reduction dimension is distributed among different
cubes, different scaling ratios can be achieved due to the data
dependency in reduction process. For GEMM kernels, the
non-ideal (ideal scaling ratio should be 2) scaling ratio is
attributed to the tradeoff between the spatial utilization and the
temporal utilization. The current partitioning scheme increases
spatial utilization by distributing input data evenly across all
vaults, so that an increasing vault number will decrease the
local data reuse per vaults, harming temporal utilization. The
N dimension is partitioned among all vaults, where the bank in
each vault gets an Nblk partition. Since the LUT data reuse
depends on the tiling of the Nblk dimension, for GEMM
kernels with small N size, the larger the total cube number
is, the smaller the effective data reuse will be. This explains
that for GEMM kernels with larger N , near optimal scaling
ratio is achieved, and other kernels with smaller N achieves
sub-optimal scaling ratio.

For the layer scaling results, by doubling the number

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 11

of layers per cube, on average, a 1.23× scaling ratio
can be achieved for all the evaluated benchmarks. Further
analysis shows that GEMM , Elementwise, Reduction,
and Datamanipulation kernels can achieve 1.24×, 1.36×,
0.98×, and 1.54× scaling ratio, respectively. For GEMM and
Reduction kernels, the scaling is non-ideal since data reduc-
tion overhead exists. Taking GEMM kernels for example,
the K dimension is partitioned among all PEs in the same
vaults, where the bank in each vault gets a Kblk partition.
By adding more layers, reduction operations will increase.
However, in the shared hierarchical bus, TSVs among layers
are shared resources. Adding more layers will reduce the
workloads per PE, as well as add total reduction latency in the
final step. Although spatial parallelism is achieved by adding
more layers, the inter-PEG reduction time will take over the
PE local computation time if K is small and layer number
increases. This explains why adding more layers will not help
reduce the GEMM execution time for EntropyCoder.

E. Sensitivity Study

This section conducts the sensitivity study for choosing the
best Ktile and Ntile for MVM, and the number of MVM
units (NUMMVM) per PE. Note that by adding multiple
number of MVM units per PE, they together function as a
larger matrix-matrix multiplication unit. The result will justify
the PE hardware configuration detailed in Table.II.

Perfsustain ≈ Perfpeak · Nround · tcomp

Nround · tcomp + tLUT
(1)

We will use GEMM as a case study throughout this
section. A simple performance model is shown in Eq.1, where
tcomp is the MVM computation time per round, and Nround

is the total rounds of computation before reloading LUT. LUT
reload latency is represented as tLUT . In order to explore
the design tradeoff, we assume the total number of LUT-
FPMult units (NUMunit) is fixed per bank (Ktile ∗Ntile ∗
NUMMVM = NUMunit), and NUMMVM is fixed for each
exploration. To increase Perfsustain, a simple approach is to
decrease tLUT by reducing Ktile, but it will increase Ntile.
Given a fixed Nblk, increasing Ntile will reduce Nround,
which in turn harm Perfsustain. We explore this design space
in Fig.14(a), where each line assumes a fixed NUMunit. The
y axis is Perfsustain, and the x axis is one configuration
of [Ktile,Ntile] pair, where NUMMVM is implied. Each
data point is the geomean of the Perfsustain under different
data reuse conditions (Nblk ranges from 16 to 512). For each
setting of Ktile and Ntile, We also estimate the number
of adders and the scratchpad size to sustain this throughput.
We choose an optimal design point (Ktile = Ntile = 4,
NUMMVM = 2) where area overhead is minimized while
Perfsustain is high enough.

VIII. DISCUSSION

A. Scaling Model Size

In order to study the impact of larger model size with the
increasing number of hardware components, we conduct a
case study on Transformer [23] with different combinations
of DLUX cubes and training batchsize (bs). The speedup and

Fig. 14. PE design space exploration. (a) Perfsustain (b) Hardware
overhead (#adders and Spad size)

Fig. 15. Scaling the number of cubes under different batchsize (bs) of
Transformer [23]: (a) Speedup, (b) Energy-efficiency improvement.

energy-efficiency improvement results of DLUX is shown in
Fig.15 (a) and (b), respectively. On the one hand, we observe
that DLUX performance scales better with larger batchsize
as shown in Fig.15 (a). That is because larger batchsize
is beneficial for DLUX to expoit data parallelism, where
added DLUX cubes can perform computation in parallel.
When batchsize is not large enough, providing more DLUX
cubes does not boost performance significantly as shown in
bs = 512 and bs = 1024. On the other hand, we observe
that DLUX energy efficiency improvement is higher for larger
batchsize under the same cube number as shown in Fig.15 (b).
That is because larger batchsize enables each DLUX cube to
have more workloads for local processing before global data
communication, which increases local data reuse and improves
energy-efficiency. We also note that the energy efficiency drops
as the number of cubes increases. This is caused by the
increased amount of data traffic among cubes, which incurs
more energy consumption than local data processing.

B. Supporting CNN Models

DLUX also supports the training of CNN models. We
use VGG16 [43] as a case study to show that DLUX can
achieve comparable performance with GPU. According to our
profiling results using Tensorflow, VGG16 consists most of
convolution operations which takes majority of the execution
time on GPU (> 99%). We support the convolution oper-
ations using the im2col method [37] which executes them
as normal GEMM operations. Using the hardware configu-
ration in Table.II, we measure the performance of VGG16
and find that DLUX achieves 1.44× speedup and 4.37×
energy-efficiency improvement in comparison with GPU. To

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 12

further explain the speedup, we discover that most of the
convolution operations in VGG16 have medium arithmetic
density (15FLOP/Byte) that is very close to GPU’s per-
formance/bandwidth ratio (17.5FLOP/Byte). This enables
GPU to have more data reuse and generate less DRAM traffic
as compared to the RNN/MLP models evaluated before, which
explains the less significant speedup. To further investigate the
energy-efficiency, we profile the energy breakdown and find
that data movement energy only constitutes 14.35% on DLUX,
while computation takes 63.81% of total energy. The small
portion of energy dedicated on data movements explains the
energy-efficiency improvement over GPU.

C. Comparison with Software Methods

Some software-based techniques, including neural network
pruning [44] and gradient compression [45], have been pro-
posed to tackle the memory-bound challenges in DNN train-
ing. Compared with DLUX, they either decrease training accu-
racy [44], or focus on a different training problem [45]. First,
the pruning method to reduce memory footprint introduce
approximation error during the computation, which reduces the
final training accuracy. For example, PruneTrain [44] reduces
accuracy on Imagenet by 1.9%. DLUX provides DNN training
speedup without sacrificing accuracy. Second, the pruning
methods mostly focus on CNN but have not achieve success on
RNN models which are more memory-bound. In comparison,
DLUX can support all models and is more effective for
memory-bound models like RNN and MLP. Third, previous
work [45] focuses on distributed training among multiple
accelerators by compressing the gradient, which is orthogonal
to the research of this work. DLUX focuses on improving
the DNN training performance and energy-efficiency in a
single accelerator, and previous method [45] can be applied
on multiple DLUX accelerators.

IX. RELATED WORK

a) Process-in-DRAM: Previous Process-in-DRAM work
either suffers from large area overhead of integrating general-
purpose logic [46], or confined to supporting fixed-point
arithmetic [33], [47] or approximate computing [32]. Without
changing DRAM timing, our work incorporates lightweight
control logic to support general DNN training, and enables
significant floating point performance improvements by adding
a large number of low-overhead LUT-FP units.

b) DNN inference accelerators: Most of the DNN ac-
celerator researches [2], [48]–[51] focus on inference, which
embraces the simplicity of the fix-point multiplier without
accuracy loss [52], [53]. They are not adoptable for training,
which must use floating point to avoid the accuracy loss.

c) Compute-centric DNN training accelerators: Since
mix precision training cannot maintain accuracy for all DNN
applications, we only compare DLUX to accelerators that sup-
port FP32. ScaleDeep [41] claims 6×-28× faster than Titan-
X GPU (Maxwell) in iso-power mode. For fair comparison,
we use one DLUX cube to compare with 1 FcLayer chip
for memory intensive data center training workloads, and
demonstrates 2.4× speedup compared with ScaleDeep.

d) Memory-centric training accelerators: Plenty of ideas
have been proposed for both the process-in-memory (PIM) ar-
chitecture [47], [54]–[56] and the near-data processing (NDP)
architecture [9], [33], [57], [58]. Drisa [47], Prime [54], Neu-
rocube [57],and Tetris [58] have proposed to apply PIM/NDP
for DNN applications, but are limited to fix-point preci-
sion inference. For DNN training with PIM architecture,
Pipelayer [55] and FloatPIM [56] leverages RRAM-based
analogy/digital computing and therefore remains a long-term
research. The endurance problem of RRAM devices (∼ 1000
training tasks before failure [56]) and long latency to support
an FP32 multiplication (43190 cycles [56]) remain unsolved.
McDRAM [33] designed MAC close to the bank buffer.
However, limited by the large overhead of building complex
circuit with the DRAM process, McDRAM cannot deliver
competitive performance. For DNN training with NDP archi-
tecture, processing units are designed on the logic die of either
HBM or HMC. DLUX achieves 6.59× improvement over the
peak bandwidth of processing-on-logic-die, because putting
logic on the base die of the 3D-stack memory does not em-
brace extra bandwidth than GPU’s HBM. Although software
transformation could improve the bandwidth utilization, the
performance is bounded by the peak memory bandwidth.

X. CONCLUSION

We present both the hardware architecture and the soft-
ware mapping and scheduling techniques for DLUX, a 3D-
stacking LUT-based near-bank accelerator for DNN training.
We address the area-constrained performance challenge by
leveraging DRAM LUT for computation. We design a hier-
archical lookup-table for high performance and low overhead
FP computing. Then, to enable efficient communications, the
hierarchical data buses are utilized to perform high bandwidth
data broadcasting operations. Beside the hardware, we also
propose mapping and scheduling techniques to further improve
the spatial and temporal utilization of DLUX. In addition,
transparent and low overhead techniques are invented to ensure
the input-output layout consistency and forward-backward lay-
out transposition. We finally evaluate DLUX on representative
deep learning training tasks and compare the results with
Tesla V100 GPU. Area analysis shows that DLUX can reduce
overhead by 60% against direct implementation of FP32 unit.
Compared with Tesla V100 GPU, end-to-end evaluation shows
that DLUX provides on average 6.3× speedup and 42× energy
efficiency improvement.

REFERENCES

[1] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2018, pp. 620–629.

[2] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 13

N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in Computer Architecture (ISCA),
2017 ACM/IEEE 44th Annual International Symposium on. IEEE, 2017,
pp. 1–12.

[3] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Phanishayee, B. Schroeder,
and G. Pekhimenko, “Tbd: Benchmarking and analyzing deep neural
network training,” arXiv preprint arXiv:1803.06905, 2018.

[4] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

[5] “MLPerf,” https://github.com/mlperf/training.
[6] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom:

Reference workloads for modern deep learning methods,” in 2016
IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2016, pp. 1–10.

[7] X. Xie, X. Hu, P. Gu, S. Li, Y. Ji, and Y. Xie, “NNBench-x: Bench-
marking and understanding neural network workloads for accelerator
designs,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp. 38–
42, 2019.

[8] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[9] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 655–668.

[10] D. Kim, T. Na, S. Yalamanchili, and S. Mukhopadhyay, “Deeptrain: A
programmable embedded platform for training deep neural networks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2360–2370, Nov 2018.

[11] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream: Scalable
and energy efficient deep learning with smart memory cubes,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 2, pp.
420–434, 2017.

[12] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A scalable
near-memory architecture for training deep neural networks on large
in-memory datasets,” arXiv preprint arXiv:1803.04783, 2018.

[13] L. Xu, D. P. Zhang, and N. Jayasena, “Scaling deep learning on multiple
in-memory processors,” in Proceedings of the 3rd Workshop on Near-
Data Processing, 2015.

[14] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-specific
architecture for deep neural networks,” Communications of the ACM,
vol. 61, no. 9, pp. 50–59, 2018.

[15] C. Nicol, “A Dataflow Processing Chip for Training Deep Neural
Networks,” 2017.

[16] H. Consortium et al., “Hybrid memory cube specification 2.1,” Retrieved
from hybridmemorycube. org, 2013.

[17] K. Sohn, W. Yun, R. Oh, C. Oh, S. Seo, M. Park, D. Shin, W. Jung,
S. Shin, J. Ryu, H. Yu, J. Jung, K. Nam, S. Choi, J. Lee, U. Kang,
Y. Sohn, J. Choi, C. Kim, S. Jang, and G. Jin, “A 1.2 v 20 nm 307
gb/s hbm dram with at-speed wafer-level io test scheme and adaptive
refresh considering temperature distribution,” IEEE Journal of Solid-
State Circuits, vol. 52, no. 1, pp. 250–260, 2017.

[18] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-grained dram: energy-efficient dram
for extreme bandwidth systems,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2017, pp. 41–54.

[19] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “ipim:
Programmable in-memory image processing accelerator using near-bank
architecture,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2020, pp. 804–817.

[20] Y.-B. Kim and T. W. Chen, “Assessing merged dram/logic technology,”
Integration, vol. 27, no. 2, pp. 179–194, 1999.

[21] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural col-
laborative filtering,” in Proceedings of the 26th international conference
on world wide web, 2017, pp. 173–182.

[22] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[24] A. M. Rush, S. Harvard, S. Chopra, and J. Weston, “A neural attention
model for sentence summarization,” in ACLWeb. Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
2017.

[25] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-
ralba, and S. Fidler, “Skip-thought vectors,” in Advances in neural
information processing systems, 2015, pp. 3294–3302.

[26] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor,
and M. Covell, “Full resolution image compression with recurrent neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5306–5314.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2016, pp. 265–283.

[28] J. Standard, “High bandwidth memory (hbm) dram,” JESD235, 2013.
[29] J. T. Pawlowski, “Hybrid memory cube (HMC),” in 2011 IEEE Hot

chips 23 symposium (HCS). IEEE, 2011, pp. 1–24.
[30] “Berkeley hardware floating-point units,” https://github.com/ucb-bar/

berkeley-hardfloat.
[31] P. Kurup and T. Abbasi, Logic synthesis using Synopsys. Springer

Science & Business Media, 2012.
[32] A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh,

and N. S. Kim, “In-dram near-data approximate acceleration for gpus,”
in Proceedings of the 27th International Conference on Parallel Archi-
tectures and Compilation Techniques, 2018, pp. 1–14.

[33] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “Mcdram:
Low latency and energy-efficient matrix computations in dram,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2613–2622, 2018.

[34] S. Aga, N. Jayasena, and M. Ignatowski, “Co-ml: a case for collaborative
ml acceleration using near-data processing,” in Proceedings of the
International Symposium on Memory Systems. ACM, 2019, pp. 506–
517.

[35] F. De Dinechin and B. Pasca, “Designing custom arithmetic data paths
with flopoco,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, 2011.

[36] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for ex-
ploiting subarray-level parallelism (SALP) in DRAM,” ACM SIGARCH
Computer Architecture News, vol. 40, no. 3, pp. 368–379, 2012.

[37] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[38] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, Jan 2016.

[39] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and
N. P. Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked
dram main memory,” in 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2012, pp. 33–38.

[40] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “Ndc: Analyzing the impact of
3d-stacked memory+ logic devices on mapreduce workloads,” in 2014
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2014, pp. 190–200.

[41] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha, A. Jagan-
nathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and A. Raghunathan,
“Scaledeep: A scalable compute architecture for learning and evaluating
deep networks,” in Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on, vol. 45, no. 2. ACM, 2017, pp.
13–26.

[42] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), Feb 2014, pp. 10–14.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[44] S. Lym, E. Choukse, S. Zangeneh, W. Wen, S. Sanghavi, and M. Erez,
“Prunetrain: fast neural network training by dynamic sparse model
reconfiguration,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–13.

[45] S. Han and W. J. Dally, “Bandwidth-efficient deep learning,” in 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE,
2018, pp. 1–6.

[46] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE micro, vol. 17, no. 2, pp. 34–44, 1997.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3021336, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X X 14

[47] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 288–301.
[Online]. Available: http://doi.acm.org/10.1145/3123939.3123977

[48] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” ACM SIGARCH Computer Architecture News, vol. 44,
no. 3, pp. 1–13, 2016.

[49] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator effi-
ciency through resource partitioning,” in Computer Architecture (ISCA),
2017 ACM/IEEE 44th Annual International Symposium on. IEEE, 2017,
pp. 535–547.

[50] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” in Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual
International Symposium on, vol. 45, no. 2. ACM, 2017, pp. 548–560.

[51] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to fpgas,” in The 49th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Press, 2016, p. 17.

[52] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun et al., “Dadiannao: A machine-learning supercomputer,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE, 2014, pp. 609–622.

[53] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Com-
puter Architecture (ISCA), 2016 ACM/IEEE 43th Annual International
Symposium on, vol. 44, no. 3. IEEE Press, 2016, pp. 367–379.

[54] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[55] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE,
2017, pp. 541–552.

[56] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory
acceleration of deep neural network training with high precision,” in
Proceedings of the 46th International Symposium on Computer Archi-
tecture. ACM, 2019, pp. 802–815.

[57] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” ACM SIGARCH Computer Architecture News,
vol. 44, no. 3, pp. 380–392, 2016.

[58] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,” in
Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017, pp. 751–764.

Peng Gu received the B.S. degree from Tsinghua
University, Beijing, China, in 2015, and the M.S.
degree from University of California, Santa Barbara,
USA, in 2017. He is currently pursuing the Ph.D.
degree with the Department of Electrical Computer
Engineering from University of California, Santa
Barbara, USA. His research interests include archi-
tecture studies for memory system and process-in-
memory accelerators.

Xinfeng Xie received the B.S. degree from Peking
University, Beijing, China, in 2017. He is currently
a Ph.D. student at the Department of Electrical
and Computer Engineering, University of California,
Santa Barbara. His current research interests include
computer architecture (especially emerging architec-
tures such as near-data processing), programming
language, and computer system.

Shuangchen Li received the B.S. and M.S. de-
gree from Tsinghua University, Beijing, China, in
2011 and 2014, respectvely, and the Ph.D. degree
in Department of Electrical Computer Engineering
from University of California, Santa Barbara, USA,
in 2018. He is currently a research scientist in
the Computing Technology Lab of Alibaba DAMO
Academy. He works on memory related computer ar-
chitecture, with emphasis on processing-in-memory
architectures, emerging non-volatile technologies,
and deep learning accelerators.

Dimin Niu received the B.S. and M.S. degree from
Tsinghua University, Beijing, China, in 2005 and
2008, respectvely, and the Ph.D. degree in Computer
Science from the Pennsylvania State University,
Pennsylvania, USA, in 2012. He is currently a re-
search scientist in the Computing Technology Lab of
Alibaba DAMO Academy. Previously, he was a staff
memory architecture in Memory Solutions Lab at
Samsung Semiconductor Inc. His research interests
include memory and storage system, process-in-
memory, and domain specific architecture.

Krishna T. Malladi received the B.S. degree from
Indian Institute of Technology, Kanpur, India, in
2004 and 2009, respectvely, and the Ph.D. degree
in Electrical Engineering from Stanford University,
Palo Alto, USA, in 2013. Krishna T. Malladi is cur-
rently a staff architect in the Memory Solutions Lab
in the US R&D center at Samsung Semiconductor.
His research interests include next-generation mem-
ory and storage systems for datacenter platforms.

Hongzhong Zheng received the B.S. and M.S.
degree from Huazhong University of Science and
Technology, Wuhan, China, in 1998 and 2001, re-
spectvely, and the Ph.D. degree in Computer Engi-
neering from the University of Illinois at Chicago,
Chicago, USA, in 2009. He is currently a research
scientist in the Computing Technology Lab of Al-
ibaba DAMO Academy. Previously, he was a staff
memory architecture in Memory Solutions Lab at
Samsung Semiconductor Inc. His research inter-
ests include computer architecture, energy-efficient

computing system designs, novel memory architecture, emerging memory
technology and performance modeling.

Yuan Xie (F’15) received the Ph.D. degree from
the Electrical Engineering Department, Princeton
University, Princeton, NJ, USA, in 2002.,He was
with IBM, Armonk, NY, USA, from 2002 to 2003,
and AMD Research China Lab, Beijing, China, from
2012 to 2013. He was a Professor with Pennsylva-
nia State University, State College, PA, USA, from
2003 to 2014. He is currently a Professor with the
Department of Electrical and Computer Engineering,
University of California at Santa Barbara, Santa
Barbara, CA, USA. His current research interests

include computer architecture, electronic design automation, and very large
scale integration design.,Dr. Xie is an expert in computer architecture who has
been inducted to ISCA/MICRO/HPCA Hall of Fame. He served as the TPC
Chair for HPCA 2018 and he is the Editor-in-Chief for the ACM Journal on
Emerging Technologies in Computing Systems, a Senior Associate Editor for
the ACM Transactions on Design Automation for Electronics Systems, and
an Associate Editor for the IEEE Transactions on Computers.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 08,2020 at 04:10:04 UTC from IEEE Xplore. Restrictions apply.

