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Image Processing: Characteristics

* Image Processing algorithms consist of pipeline stages that are both
wide and heterogeneous

* Each stage is wide — Example: Image Blur
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Image Processing: Characteristics

* Image Processing algorithms consist of pipeline stages that are both
wide and heterogeneous

* Each stage is wide — Example: Image Blur
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Image Processing: Characteristics

* Image Processing algorithms consist of pipeline stages that are both
wide and heterogeneous

* Overall pipelines are heterogeneous — Example: Local Laplacian Filter
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Image Processing: Characteristics

Image processing workloads have high memory bandwidth demand:

e Software: low temporal reuse due to
* (1) low arithmetic density
e (2) difficulty of pipeline fusion
* Hardware: on-chip cache cannot hold all intermediate data




Motivation Data: Memory Bandwidth Bottleneck

Scalable and Energy-Efficient Architecture Lab (SEAL)

* On average: 57.55% memory utilization v.s. 3.43% ALU utilization

* Benchmark: single-stage / multi-stage kernels
* Configuration: Halide toolchain on a Tesla V100 GPU
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Bandwidth
(GB/s)

Motivation Data: Memory Bandwidth Bottleneck

Single-stage kernels
ALU utilization: 2.85% =——————————> ALU utilization: 4.53%

DRAM utilization: 58.80%
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Multi-stage kernels

DRAM utilization: 55.73%

DRAM bandwidth = DRAM utilization = ALU utilization
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Motivation Data: Memory Bandwidth Bottleneck

Pipeline optimization does not change memory-bound behavior of
image processing workloads on GPU

DRAM bandwidth = DRAM utilization = ALU utilization —_
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GPU: Bandwidth Scaling Challenge

Vertical interconnect: Through Silicon Vias (TSVs)
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provides large bandwidth by 3D die-stacking technology
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GPU: Bandwidth Scaling Challenge

Vertical interconnect: Through Silicon Vias (TSVs)
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_ TSV 1/0
* Raw memory bandwidth = —————— .
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GPU: Bandwidth Scaling Challenge

* Raw memory bandwidth =

(the number of I/Os) X (data rate) DRAM die

DRAM die

. Increasing-will have DRAM die

signal integrity issues and increase
power consumption as well
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Summary

* Image processing is important in many application domains

e GPU suffers from memory bandwidth bottleneck:
» Software: image processing pipelines are wide and heterogeneous
* Hardware: GPU has bandwidth scaling challenges

How to design a programmable image processing accelerator
to provide more memory bandwidth?
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3D-Stacking Processing-in-memory (PIM) Architecture
* Key idea:

* Integrate computation logic closer to physical memory in order to increase
memory bandwidth and reduce data movement energy

GPU + 3D memory
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3D-Stacking Processing-in-memory (PIM) Architecture
* Key idea:

* Integrate computation logic closer to physical memory in order to increase
memory bandwidth and reduce data movement energy
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3D-Stacking Processing-in-memory (PIM) Architecture

* Key idea:

* Integrate computation logic closer to physical memory in order to increase

memory bandwidth and reduce data movement energy

GPU + 3D memory
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Challenges for near-bank architecture

Application
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End-to-end software support:
 Programming interface
* Compiler optimization
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Lightweight programmable
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processing domain
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Key Contributions

 iPIM: A decoupled control-execution architecture
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Key Contributions

* Lightweight programmable arch: A decoupled control-execution architecture
 Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
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Key Contributions

* Lightweight programmable arch: A decoupled control-execution architecture
 Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
* End-to-end compilation flow: Halide-iPIM

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Halide Frontend . Algorithm —» Schedule —» Halhide =~ Halide _
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iPIM Backend L Instruct.lon — Reglst.er Instructl.on Exec?uFable
| Lowering Allocation Reordering (*.1pim)
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iIPIM: High-level Arch Design Overview

* 3D-stacking, near-bank processing-in-memory architecture

* Hierarchical design with good scalability
e Cube — Vault — Process Group (PG) — Process Engine (PE)
* A Process Engine (PE) contains a DRAM bank and simple logic components
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Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the
base logic die;

* Back-end (simple logic and memory-intensive) execution components are
placed on the DRAM dies.
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base logic die;

o Control Flow

NIC

Vault Architecture

* Key idea: Decoupled Control-Execution Architecture
* Front-end (complex logic) control components of the core are placed on the

* Back-end (simple logic and memory-intensive) execution components are
placed on the DRAM dies.
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Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the
base logic die;

* Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.
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Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the
base logic die;

* Back-end (simple logic and memory-intensive) execution components are
placed on the DRAM dies.
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Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the

base logic die;

* Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

e Near-bank Execution

Parallel memory accesses
-bank-level bandwidth
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Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the
base logic die;

* Back-end (simple logic and memory-intensive) execution components are
placed on the DRAM dies.
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Single-Instruction-Multiple-Bank (SIMB) ISA

* Enable massive bank-level concurrent execution to exploit data parallelism

Example: load data from the DRAM bank to the local data register file (DataRF)

Massive bank-level concurrent execution

) PGO0 PG7
Uniform PE
PEO | ...| PE3 ... ||PEO| ...| PE3
accesses
Instruction TSV
broadcast Atbiter | SIMB
Controller

1d_rf

Active bank
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Single-Instruction-Multiple-Bank (SIMB) ISA

* Enable massive bank-level concurrent execution to exploit data parallelism

e SIMD interface to exploit abundant bank-level bandwidth
Example: load data from the DRAM bank to the local data register file (DataRF)

Massive bank-level concurrent execution SIMD interface for local bank access
peel — Ctrl. Path
,,,,,,, 21, g — Addr. Path
. PGO PG7 | 5] — Data Path
Uniform PE 1 = 128b
PEO | ...| PE3 ... || PEO | ...| PE3 =
accesses ! £ + 1
AA
@)
2
g —>¢ —toDataRF
Instruction TSV e > i )
broadcast Arbiter je—] OTMB ]
Controller
1d_rf > _
Active bank Z| =
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Single-Instruction-Multiple-Bank (SIMB) ISA

* Predicate execution (simb_mask) to allow divergent bank-level accesses / computations

PGO PG7
peo | . [PE3 . pro | . [Pr3 = = —— Id_rf dram_addrl drf_addrl 0x8888
Divergent
PE accesses
PGO PG7
pEo | . [PE3 N PEO [ rE3 = = —— Id_rf dram_addr2 drf_addr2 Ox1111
Instruction TSV 1d_rf dram_bank_address | datarf _address simb_mask
broadcast Atbiter  —| SIMB . . -
Controller |ld_rf instruction 37b

1d_rf

Active bank
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Single-Instruction-Multiple-Bank (SIMB) ISA

e Support indirect addressing in image processing domain

Example: access pixel[xi, offset+yi]

cal_arf op dst_arf src_arfl src_arf2 | simb_mask
== Ctrl. Path
~ ;m — Addr. Path
B == Data Path
A A L{i ot
Perform:
JAdarRF) | 54 : dram_address = xi + (offset+yi)*img_width
=1Int. >
ALU R
2=
2| |=
36
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Single-Instruction-Multiple-Bank (SIMB) ISA

e Support indirect addressing in image processing domain

Example: access pixel[xi, offset+yi

Id_rf dram_bank_address | datarf address | simb_mask

\

This address comes from AddrRF

Q — Ctrl. Path

2, — Addr. Path

5 — Data Path

E

g AA .

o Access local DRAM bank using
= p ¢DataRF .

£| | [jradrRE| | 5 : dram_address stored in AddrRF
=

A 4
A\ 4

\ 4

Arbiter
TSV
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Single-Instruction-Multiple-Bank (SIMB) ISA

* SIMB ISA also supports:

* Data-dependent calculation
 mov_drf/ mov_arf

 Remote data access from different vaults / cubes
* rd_vsm /wr_vsm/req

* Control flow instructions
e jump / cjump / calc_crf / seti_crf

* Synchronization mechanism
* Sync

* Please refer to the paper for more details
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End-to-end compilation support: Halide-iPIM

e Halide

* A domain specific programming language and toolchain for image processing

* It decouples the algorithm descriptions and the schedules to hardware mapping

Example: image blur

// Algorithm

Func blurx(x, y) = (in(x- 1, y) +in(x, y)
+in(x +1,y)) / 3.0f;

Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)
+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM

out.compute_root()
.ipim_tile(x, y, xi, yi, 8, 8)
Jdoad_pgsm(xi, yi)
vectorize(xi, 4);
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End-to-end compilation support: Halide-iPIM

 Halide-iPIM

* We extend Halide frontend to support customized schedules for iPIM
* We leverage existing Halide schedules for pipeline fusion and vectorization on iPIM

_______________________________________________________________________________________________________________________________________________________________

| Halide , Halide Halide
. Frontend Algening Schedule Optimization Module
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End-to-end compilation support: Halide-iPIM

 Halide-iPIM

* We extend Halide frontend to support customized schedules for iPIM
* We leverage existing Halide schedules for pipeline fusion and vectorization on iPIM
* We develop three backend optimizations for iPIM

_______________________________________________________________________________________________________________________________________________________________

Halide , | Halide | Halide |
' Frontend Algorithm —p> Schedule Optimization Module _|
-~ iPIM Instruction Register Instruction Executable
- Backend Lowering Allocation Reordering (*.ipim)

e e e o e e e e e e e e e e e e e e e e e e e e e e e 1 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e ; a1
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Halide-iPIM: Frontend Schedules

* Two new schedule primitives:

e distribute data into different banks

cube cube
0,0 (@10 &
; b

An image

PGO

PG1 |

Example: image blur

// Algorithm

Func blurx(x, y) = (in(x - 1, y) + in(x, y)
+in(x + 1, y)) / 3.0f;

Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)
+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

Jload_pgsm(xi, yi)

vectorize(xi, 4);
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Example: image blur
Halide-iPIM: Frontend Schedules o it vl i v
+in(x + 1, y)) / 3.0f;

* Two new schedule primitives: Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;
* load _pgsm()

« Utilize the scratchpad of a processing group (PG) // Schedule for iPIM
out.compute_root()

ipim_tile(x, y, xi, yi, 8, 8)
Joad_pgsm(xi, yi)
.vectorize(xi, 4);

load_pgsm(Xxi, yi)
Currently in PGSM  Load for next stage

[]

Non-overlapping PE3|| [PE2|| [PE3|| [PE2| | PE3|| PE2

[]

Overlapping (Halo) PE1}| PEO|| PE1|||PEO| | PE1|||PEO

Working Set (Current Stage)
[] Working Set (Next Stage)

PE3}| PE2| | |PE3|||PE2| | PE3|||PE2

PE1| | PEO| | |PE1| | [PEO| | PE1 | PEO

uROS I0)SBY I\I\
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Halide-iPIM: Frontend Schedules

* Leverage existing schedule primitives:
* Specify pipeline fusing
* vectorize()
* Align data to improve utilization of SIMD units

Example: image blur

// Algorithm

Func blurx(x, y) = (in(x - 1, y) + in(x, y)
+in(x +1,y))/ 3.0f;

Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)
+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM

out.
.ipim_tile(x, y, xi, vi, 8, 8)
Jdoad_pgsm(xi, yi)
.vectorize(xi, 4);
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Halide-iPIM: Backend Optimizations

e Optimization objectives:

Instruction-level DRAM row buffer
parallelism locality

* Our techniques:

Register max Instruction Memory order
spanning reordering enforcement
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Halide-iPIM: Backend Optimizations

Example: Image Brightening

Input image in DRAM Pixels in register file Output image in DRAM
| . e———

; »[] > e
d_rf comp st_rf

IPIM instructions

46



Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Backend Optimizations

Example: Image Brightening

|d_rf (DOx0, ROx0)
comp (ROx0, ROx0, 0x2, MUL)

comp (ROXO, ROx0, 0x2, MUL) ———————

Register st_rf (DOx40, ROx0)
dependency |ld_rf (DOx1, ROx0)
Register st_rf (DOx41, ROx0)
dependency |ld_rf (DOx2, ROx0)

comp (ROx0, ROx0, 0x2, MUL)
st_rf (DOx42, ROx0)

Register max
spanning

|d_rf (DOx0, ROx0)

comp (ROx0, ROx0, 0x2, MUL)

st_rf (DOx40, ROx0)

|d_rf (DOx1, ROx1) > Eliminate
comp (ROx1, ROx1, 0x2, MUL) register
st_rf (DOx41, ROx1) dependency
|d_rf (DOx2, ROx2) >

comp (ROx2, ROx2, 0x2, MUL)

st_rf (DOx42, ROx2)
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Halide-iPIM: Backend Optimizations

Example: Image Brightening

Load

latency ld_rf (DOxO, ROx0)

stall comp (ROx0, ROx0, 0x2, MUL)
st_rf (DOx40, ROx0)

Load

|d_rf (DOx1, ROx1)
lat - '
atency C comp (ROx1, ROx1, 0x2, MUL)

st_rf (DOx42, ROx2)
|d_rf (DOx0, ROx2)
comp (ROx2, ROx2, 0x2, MUL)
st_rf (DOx42, ROx2)

Instruction
reordering

—

Overlap
memory
access

|d_rf (DOx0, ROx0)

|d_rf (DOx1, ROx1)

comp (ROx0, ROx0, 0x2, MUL) 4/
comp (ROx1, ROx1, 0x2, MUL) latency
st_rf (DOx40, ROx0)

st_rf (DOx41, ROx1)

|d_rf (DOx2, ROx2)

comp (ROx2, ROx2, 0x2, MUL)

st_rf (DOx42, ROx2)

\J
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Halide-iPIM: Backend Optimizations

Example: Image Brightening

|d_rf (DOx0, ROxO0)
Id_rf (DOx1, ROx1)
comp (ROx0, ROx0, 0x2, MUL)
comp (ROx1, ROx1, 0x2, MUL)
Disrupt st_rf (DOx40, ROx0)
row C st_rf (DOx41, ROx1)
buffer |d_rf (DOx2, ROx2)
locality comp (ROx2, ROx2, 0x2, MUL)
st_rf (DOx42, ROx2)

Memory order
enforcement

—

|d_rf (DOxO, ROxO0) All loads to
|d_rf (DOx1, ROx1)
Id_rf (DOX2, ROX2) the same
row buffer
comp (ROx0, ROx0, Ox2, MUL) Enforce
comp (ROx1, ROx1, 0x2, MUL) memory
comp (ROx2, ROx2, 0x2, MUL)
, order
st_rf (DOx40, ROx0) All stores to
st_rf (DOx41, ROx1)
the same

st_rf (DOx42, ROx2)

row buffer

49



Scalable and Energy-Efficient Architecture Lab (SEAL)

Evaluations
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m SIMD Unit

mInt ALU

m AddrRF
DataRF

m MC

m PGSM
Original DRAM die area

Area overhead of added components per DRAM die: 10.71%
* Conservatively assume 2x area overhead in DRAM process

Area of control logic on base die: 0.92mm? (fits in 3.5mm? extra area per vault)
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iIPIM (Near-bank Arch) v.s. GPU

Speedup (w.r.t. GPU) X Energy Saving (w.r.t. GPU)

0 21.09x 43.78x
18 [ 1% X X = X
o 18 X X X
212 X
o 10
a 8
7§
2
0
N S < > : S '
& & & = 2 N © AP C
> Gjb' %‘b' é\,o < @'(Q Q N
A3 &R S 3 & > 0
S NN N
Q > Oo‘b c:)\
x)

Energy Saving (%)

 11.02x average speedup
* 79.49% average energy saving

Compared to GPU baseline, iPIM achieves:
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iIPIM (Near-bank Arch) v.s. Process-on-base-die

Speedup (w.r.t. base-die) XEnergy Saving (w.r.t. base-die)

Speedup
=W RN\
X

Energy Saving (%)

Compared to process-on-base-die solution, iPIM achives:
 3.61x average speedup
* 56.71% average energy saving
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Effectiveness of iPIM Compiler Optimizations

mopt v.s. baselinel mopt v.s. baseline2
opt v.s. baseline3 opt v.s. baseline4
4.5 o
3451 opt: Apply all 3 optimizations
573 baselinel: No optimizations
?é 2'3 baseline2: No register allocation optimization
o 1-? baseline3: No instruction reordering
0.5 baseline4: No memory ordering enforcement
0
$ ¥ & IS ¥ & & &
-@? ¢ %‘7’6& %‘7’6& = @Q}‘b ‘960 > Q\%C} %CQ& &
. . Q
® 04@ S ¥ .gb\é \&6 \\;b S G
Q % \)oo‘b' C‘)\;

All three compiler backend optimizations together provide 3.19x speedup
compared to unoptimized program

Instruction reordering is most effective: maximize instruction level parallelism | .,




Scalable and Energy-Efficient Architecture Lab (SEAL)

iIPIM Key Takeaways:

Lightweight programmable arch: A decoupled control-execution architecture
Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
End-to-end compilation flow: Halide-iPIM

Evaluation results:
e 11.02x speedup and 79.49% energy savings over state-of-the-art GPU accelerator
* 3.61x speedup and 56.71% energy savings over the process-on-base-die solution
e Overall compiler optimizations provide 3.19x speedup over unoptimized baseline
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iIPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

Thank you!
Q&A

€L

Alibaba
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