
Scalable and Energy-Efficient Architecture Lab (SEAL)

iPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

Peng Gu*1, Xinfeng Xie*1, Yufei Ding1

Guoyang Chen2, Weifeng Zhang2, Dimin Niu2, Yuan Xie1,2

*co-primary first authors
1

1University of California, Santa Barbara
2Alibaba Group



Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Application Scenarios
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Image Processing: Application Scenarios
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Image Processing: Characteristics
• Image Processing algorithms consist of pipeline stages that are both 

wide and heterogeneous
• Each stage is wide – Example: Image Blur
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Image blur filter Image blur output
Filter scan order
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Image Processing: Characteristics
• Image Processing algorithms consist of pipeline stages that are both 

wide and heterogeneous
• Each stage is wide – Example: Image Blur
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Image Processing: Characteristics
• Image Processing algorithms consist of pipeline stages that are both 

wide and heterogeneous
• Overall pipelines are heterogeneous – Example: Local Laplacian Filter 

https://dl.acm.org/doi/pdf/10.1145/2499370.2462176
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Image Processing: Characteristics
• Image Processing Algorithms consist of pipeline stages that are both 

wide and heterogeneous

Image processing workloads have high memory bandwidth demand:

• Software: low temporal reuse due to 
• (1) low arithmetic density
• (2) difficulty of pipeline fusion

• Hardware: on-chip cache cannot hold all intermediate data
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Motivation Data: Memory Bandwidth Bottleneck
• On average: 57.55% memory utilization v.s. 3.43% ALU utilization
• Benchmark: single-stage / multi-stage kernels
• Configuration: Halide toolchain on a Tesla V100 GPU
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Motivation Data: Memory Bandwidth Bottleneck
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Motivation Data: Memory Bandwidth Bottleneck
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Pipeline optimization does not change memory-bound behavior of 
image processing workloads on GPU
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GPU: Bandwidth Scaling Challenge
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GPU provides the highest memory bandwidth: High Bandwidth Memory (HBM) 
provides large bandwidth by 3D die-stacking technology
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GPU: Bandwidth Scaling Challenge

DRAM die

DRAM die

DRAM die

DRAM die

Base Logic die PHY

Interposer

GPUPHY

Vertical interconnect: Through Silicon Vias (TSVs)

Interposer Interconnects

Memory bandwidth wall: memory bandwidth cannot scale with computation throughput
• Off-chip I/O (Interposer Interconnects)
• TSV I/O
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GPU: Bandwidth Scaling Challenge

• Raw memory bandwidth = 
(the number of I/Os) X (data rate)

• Increasing the number of I/Os is 
difficult under tight area budget
• Limited off-chip pins
• TSVs already consumes ~18.8% 

DRAM die area for the current 
HBM2
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GPU: Bandwidth Scaling Challenge

• Raw memory bandwidth = 
(the number of I/Os) X (data rate)

• Increasing data rate will have 
signal integrity issues and increase 
power consumption as well
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Summary

• Image processing is important in many application domains
• GPU suffers from memory bandwidth bottleneck:
• Software: image processing pipelines are wide and heterogeneous
• Hardware: GPU has bandwidth scaling challenges

15

How to design a programmable image processing accelerator 
to provide more memory bandwidth?
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3D-Stacking Processing-in-memory (PIM) Architecture
• Key idea: 
• Integrate computation logic closer to physical memory in order to increase 

memory bandwidth and reduce data movement energy
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3D-Stacking Processing-in-memory (PIM) Architecture
• Key idea: 
• Integrate computation logic closer to physical memory in order to increase 

memory bandwidth and reduce data movement energy
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3D-Stacking Processing-in-memory (PIM) Architecture
• Key idea: 
• Integrate computation logic closer to physical memory in order to increase 

memory bandwidth and reduce data movement energy
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Challenges for near-bank architecture
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Challenges for near-bank architecture
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Lightweight programmable 
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Challenges for near-bank architecture
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Challenges for near-bank architecture
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End-to-end software support:
• Programming interface
• Compiler optimization
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• iPIM: A decoupled control-execution architecture
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• Lightweight programmable arch: A decoupled control-execution architecture
• Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
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• Lightweight programmable arch: A decoupled control-execution architecture
• Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
• End-to-end compilation flow: Halide-iPIM
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iPIM: High-level Arch Design Overview
• 3D-stacking, near-bank processing-in-memory architecture
• Hierarchical design with good scalability
• Cube – Vault – Process Group (PG) – Process Engine (PE)
• A Process Engine (PE) contains a DRAM bank and simple logic components
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Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the 

base logic die; 
• Back-end (simple logic and memory-intensive) execution components are 

placed on the DRAM dies.
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Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the 

base logic die; 
• Back-end (simple logic and memory-intensive) execution components are 

placed on the DRAM dies.
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Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the 

base logic die; 
• Back-end (simple logic and memory-intensive) execution components are 

placed on the DRAM dies.
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Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the 

base logic die; 
• Back-end (simple logic and memory-intensive) execution components are 

placed on the DRAM dies.
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Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the 

base logic die; 
• Back-end (simple logic and memory-intensive) execution components are 

placed on the DRAM dies.
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Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the 

base logic die; 
• Back-end (simple logic and memory-intensive) execution components are 

placed on the DRAM dies.
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Single-Instruction-Multiple-Bank (SIMB) ISA
• Enable massive bank-level concurrent execution to exploit data parallelism

Example: load data from the DRAM bank to the local data register file (DataRF)
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Single-Instruction-Multiple-Bank (SIMB) ISA
• Enable massive bank-level concurrent execution to exploit data parallelism
• SIMD interface to exploit abundant bank-level bandwidth
Example: load data from the DRAM bank to the local data register file (DataRF)
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Single-Instruction-Multiple-Bank (SIMB) ISA

• Predicate execution (simb_mask) to allow divergent bank-level accesses / computations
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Single-Instruction-Multiple-Bank (SIMB) ISA
• Support indirect addressing in image processing domain
Example: access pixel[xi, offset+yi]
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Single-Instruction-Multiple-Bank (SIMB) ISA
• Support indirect addressing in image processing domain
Example: access pixel[xi, offset+yi]
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• SIMB ISA also supports:
• Data-dependent calculation

• mov_drf / mov_arf
• Remote data access from different vaults / cubes

• rd_vsm / wr_vsm / req
• Control flow instructions

• jump / cjump / calc_crf / seti_crf
• Synchronization mechanism

• Sync

• Please refer to the paper for more details

38

Single-Instruction-Multiple-Bank (SIMB) ISA
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• Halide
• A domain specific programming language and toolchain for image processing
• It decouples the algorithm descriptions and the schedules to hardware mapping

39

End-to-end compilation support: Halide-iPIM

// Algorithm
Func blurx(x, y) = (in(x - 1, y) + in(x, y) 

+ in(x + 1, y)) / 3.0f; 
Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

.ipim_tile(x, y, xi, yi, 8, 8)

.load_pgsm(xi, yi)

.vectorize(xi, 4);

Example: image blur
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• Halide
• An domain specific programming language and toolchain for image processing
• It decouples the algorithm descriptions and the schedules to hardware mapping

• Halide-iPIM
• We extend Halide frontend to support customized schedules for iPIM
• We leverage existing Halide schedules for pipeline fusion and vectorization on iPIM

40

End-to-end compilation support: Halide-iPIM
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• Halide
• An domain specific programming language and toolchain for image processing
• It decouples the algorithm descriptions and the schedules to hardware mapping

• Halide-iPIM
• We extend Halide frontend to support customized schedules for iPIM
• We leverage existing Halide schedules for pipeline fusion and vectorization on iPIM
• We develop three backend optimizations for iPIM

41

End-to-end compilation support: Halide-iPIM
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Lowering
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Reordering
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Executable
(*.ipim)
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• Two new schedule primitives:
• ipim_tile()

• distribute data into different banks

42

Halide-iPIM: Frontend Schedules
Example: image blur

cube
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tile_x

tile_y

An image A sub-image A Block

A Tile

A Patch

PE0 PE1

PE2 PE3

ipim_tile(x, y, xi, yi, 8, 8)

// Algorithm
Func blurx(x, y) = (in(x - 1, y) + in(x, y) 

+ in(x + 1, y)) / 3.0f; 
Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

.ipim_tile(x, y, xi, yi, 8, 8)

.load_pgsm(xi, yi)

.vectorize(xi, 4);
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• Two new schedule primitives:
• load_pgsm()

• Utilize the scratchpad of a processing group (PG)

43

Example: image blur
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Overlapping (Halo)

Working Set (Current Stage)

Working Set (Next Stage)

R
aster Scan

Currently in PGSM Load for next stage
load_pgsm(xi, yi)

// Algorithm
Func blurx(x, y) = (in(x - 1, y) + in(x, y) 

+ in(x + 1, y)) / 3.0f; 
Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

.ipim_tile(x, y, xi, yi, 8, 8)

.load_pgsm(xi, yi)

.vectorize(xi, 4);

Halide-iPIM: Frontend Schedules
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• Leverage existing schedule primitives:
• compute_root()

• Specify pipeline fusing
• vectorize()

• Align data to improve utilization of SIMD units

44

Halide-iPIM: Frontend Schedules

Example: image blur

// Algorithm
Func blurx(x, y) = (in(x - 1, y) + in(x, y) 

+ in(x + 1, y)) / 3.0f; 
Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

.ipim_tile(x, y, xi, yi, 8, 8)

.load_pgsm(xi, yi)

.vectorize(xi, 4);
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• Optimization objectives:

45

Halide-iPIM: Backend Optimizations

Instruction-level 
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Halide-iPIM: Backend Optimizations
Example: Image Brightening

Input image in DRAM Output image in DRAM

ld_rf comp st_rf

Pixels in register file

iPIM instructions
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Halide-iPIM: Backend Optimizations

ld_rf (D0x0, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x40, R0x0)
ld_rf (D0x1, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x41, R0x0)
ld_rf (D0x2, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x42, R0x0)
…

ld_rf (D0x0, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x40, R0x0)
ld_rf (D0x1, R0x1)
comp (R0x1, R0x1, 0x2, MUL)
st_rf (D0x41, R0x1)
ld_rf (D0x2, R0x2)
comp (R0x2, R0x2, 0x2, MUL)
st_rf (D0x42, R0x2)
…

Register
dependency

Register
dependency

Eliminate
register
dependency

Register max 
spanning

Example: Image Brightening
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Halide-iPIM: Backend Optimizations

ld_rf (D0x0, R0x0)
ld_rf (D0x1, R0x1)
comp (R0x0, R0x0, 0x2, MUL)
comp (R0x1, R0x1, 0x2, MUL)
st_rf (D0x40, R0x0)
st_rf (D0x41, R0x1)
ld_rf (D0x2, R0x2)
comp (R0x2, R0x2, 0x2, MUL)
st_rf (D0x42, R0x2)
…

Instruction 
reordering

ld_rf (D0x0, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x40, R0x0)
ld_rf (D0x1, R0x1)
comp (R0x1, R0x1, 0x2, MUL)
st_rf (D0x42, R0x2)
ld_rf (D0x0, R0x2)
comp (R0x2, R0x2, 0x2, MUL)
st_rf (D0x42, R0x2)
…

Load 
latency 
stall
Load 
latency 
stall

Overlap
memory 
access 
latency
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Halide-iPIM: Backend Optimizations

ld_rf (D0x0, R0x0)
ld_rf (D0x1, R0x1)
ld_rf (D0x2, R0x2)
…
comp (R0x0, R0x0, 0x2, MUL)
comp (R0x1, R0x1, 0x2, MUL)
comp (R0x2, R0x2, 0x2, MUL)
…
st_rf (D0x40, R0x0)
st_rf (D0x41, R0x1)
st_rf (D0x42, R0x2)
…

All loads to 
the same 

row buffer

All stores to 
the same 

row buffer

Enforce 
memory 

order

ld_rf (D0x0, R0x0)
ld_rf (D0x1, R0x1)
comp (R0x0, R0x0, 0x2, MUL)
comp (R0x1, R0x1, 0x2, MUL)
st_rf (D0x40, R0x0)
st_rf (D0x41, R0x1)
ld_rf (D0x2, R0x2)
comp (R0x2, R0x2, 0x2, MUL)
st_rf (D0x42, R0x2)
…

Memory order 
enforcement

Disrupt 
row 
buffer 
locality
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Evaluations

50
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Area Analysis

Area overhead of added components per DRAM die: 10.71%
• Conservatively assume 2x area overhead in DRAM process

Area of control logic on base die: 0.92mm2 (fits in 3.5mm2 extra area per vault)

SIMD Unit
Int ALU
AddrRF
DataRF
MC
PGSM

iPIM overhead

Original DRAM die area



Scalable and Energy-Efficient Architecture Lab (SEAL)

52

iPIM (Near-bank Arch) v.s. GPU

Compared to GPU baseline, iPIM achieves:
• 11.02x average speedup
• 79.49% average energy saving
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iPIM (Near-bank Arch) v.s. Process-on-base-die
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Compared to process-on-base-die solution, iPIM achives:
• 3.61x average speedup
• 56.71% average energy saving
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Effectiveness of iPIM Compiler Optimizations
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All three compiler backend optimizations together provide 3.19x speedup 
compared to unoptimized program

Instruction reordering is most effective: maximize instruction level parallelism

opt: Apply all 3 optimizations
baseline1: No optimizations
baseline2: No register allocation optimization 
baseline3: No instruction reordering
baseline4: No memory ordering enforcement
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• Lightweight programmable arch: A decoupled control-execution architecture
• Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
• End-to-end compilation flow: Halide-iPIM

• Evaluation results:
• 11.02x speedup and 79.49% energy savings over state-of-the-art GPU accelerator
• 3.61x speedup and 56.71% energy savings over the process-on-base-die solution
• Overall compiler optimizations provide 3.19x speedup over unoptimized baseline

55

iPIM Key Takeaways:
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iPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

56

Thank you!
Q&A


