Scalable and Energy-Efficient Architecture Lab (SEAL)

iIPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

Peng Gu*!, Xinfeng Xie*?, Yufei Ding!
Guoyang Chen?, Weifeng Zhang?, Dimin Niu?, Yuan Xie'l?

lUniversity of California, Santa Barbara
2Alibaba Group

.~ l(%nl\B\lul a
Scalable Energy-efficient

Architecture Lab Alibaba

AN

’~

*co-primary first authors

Scalable and Energy-Efficient Architecture Lab (SEAL)

Smartphone Traffic (.| iy Medl.cal Satellite
- |
Camera o |Maging Imagi
Q Camera ¥ Equipment maging

Data Center,
Work Station

m

Machine Learning Traffic Analysis Medical Image Processing Geographic Information System

http://www.nectec.or.th/2008/r-d/img.html
https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/m-lab-biomedical-imaging-and-processing
https://clarklabs.org/terrset/idrisi-image-processing/

http://www.nectec.or.th/2008/r-d/img.html
https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/m-lab-biomedical-imaging-and-processing
https://clarklabs.org/terrset/idrisi-image-processing/

Scalable and Energy-Efficient Architecture Lab (SEAL)

, Medical
Smartphone (] Traffic C1® | oging
(e Camera Camera s Equipment
Image Domain Programmability
Data Center, E — a :
Work Station = = =) Processing High Performance
_— Accelerator High Energy EfflClency

Machine Learning Traffic Analysis Medical Image Processing Geographic Information System
http://www.nectec.or.th/2008/r-d/img.html

https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/m-lab-biomedical-imaging-and-processing 3
https://clarklabs.org/terrset/idrisi-image-processing/

http://www.nectec.or.th/2008/r-d/img.html
https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/m-lab-biomedical-imaging-and-processing
https://clarklabs.org/terrset/idrisi-image-processing/

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Characteristics

* Image Processing algorithms consist of pipeline stages that are both
wide and heterogeneous

* Each stage is wide — Example: Image Blur

]

Image blur filter Image blur output

=

«
b O
u:} -

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Characteristics

* Image Processing algorithms consist of pipeline stages that are both
wide and heterogeneous

* Each stage is wide — Example: Image Blur

EEE
- N

Large size of
9 intermediate
data

Memory-level

c parallelism
among pixels

<
density operations 5

9 Low arithmetic Before

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Characteristics

* Image Processing algorithms consist of pipeline stages that are both
wide and heterogeneous

* Overall pipelines are heterogeneous — Example: Local Laplacian Filter

COPY

LUT

https://dl.acm.org/doi/pdf/10.1145/2499370.2462176

https://dl.acm.org/doi/pdf/10.1145/2499370.2462176

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Characteristics

Image processing workloads have high memory bandwidth demand:

e Software: low temporal reuse due to
* (1) low arithmetic density
e (2) difficulty of pipeline fusion
* Hardware: on-chip cache cannot hold all intermediate data

Motivation Data: Memory Bandwidth Bottleneck

Scalable and Energy-Efficient Architecture Lab (SEAL)

* On average: 57.55% memory utilization v.s. 3.43% ALU utilization

* Benchmark: single-stage / multi-stage kernels
* Configuration: Halide toolchain on a Tesla V100 GPU

Bandwidth

(GB/s)

DRAM bandwidth = DRAM utilization = ALU utilization

800
600 | * = * 5
400 - _ K B *
200 .
0 2 & & : » » ud 2 ud & 2
® & A D D & H ©®
FPFFTITSFSFTFTT IS
3% & & & NSO S
Q & 8 © & &N F
o P F & NV
Q > P o

100 8
80 =
60 2
40 =
20 E
0 3

Bandwidth
(GB/s)

Motivation Data: Memory Bandwidth Bottleneck

Single-stage kernels
ALU utilization: 2.85% =——————————> ALU utilization: 4.53%

DRAM utilization: 58.80%

800
600
400
200

0

F

Scalable and Energy-Efficient Architecture Lab (SEAL)

Multi-stage kernels

DRAM utilization: 55.73%

DRAM bandwidth = DRAM utilization = ALU utilization

Utilization (

& S &
S & &

Scalable and Energy-Efficient Architecture Lab (SEAL)

Motivation Data: Memory Bandwidth Bottleneck

Pipeline optimization does not change memory-bound behavior of
image processing workloads on GPU

DRAM bandwidth = DRAM utilization = ALU utilization —_

800 100
600 * » » 80 =
S - 40 i & + » = |o0F
o; Q 4 40 E
8 200) . 20 S
§ A 0 % 3 . 3 8 ”® 8 2 3 % " O 5
= & PFFFTSSSE S
A S S > S O~
S » D N AN &
< F $ S @ SR A S
) 4&0 QQ ‘2,\% \é N \)‘b QO €
Qo $s\‘b S c& (o\a‘z‘

10

Scalable and Energy-Efficient Architecture Lab (SEAL)

GPU: Bandwidth Scaling Challenge

Vertical interconnect: Through Silicon Vias (TSVs)

1

DRAM die || || || A
D))
DRAM die
HBM: [oXeoleole)
High] DRAM die > 3D die-stacking
Bandwidth QPOOO
[@OXoleoX®)
Base Logic die PHY / PHY | GPU
OO O OO O

(@)
| » Interposer Interconnects

Interposer

GPU provides the highest memory bandwidth: High Bandwidth Memory (HBM)
provides large bandwidth by 3D die-stacking technology

11

Scalable and Energy-Efficient Architecture Lab (SEAL)

GPU: Bandwidth Scaling Challenge

Vertical interconnect: Through Silicon Vias (TSVs)

1

DRAM die

[@oYeoleole)
DRAM die

)
. ()

DRAM die | !
DRAM die

[oXolole®)
Base Logic die PHY PHY | GPU
Interposer " » Interposer Interconnects

P \ ™ P
)

Memory bandwidth wall: memory bandwidth cannot scale with computation throughput
» Off-chip I/O (Interposer Interconnects)
e TSVI/O

12

Scalable and Energy-Efficient Architecture Lab (SEAL)

_ TSV 1/0
* Raw memory bandwidth = —————— .
(the number of I/Os) X (data rate) DRAM die | I
DRAM die | :
* Increasing the number of 1/Os is DRAM die | !
difficult under tr:ght area budget SRl |
* Limited off-chip pins ool
ic die =~ P | PHY |
e TSVs already consumes ~18.8% ij?j';fioog]---- g oipgooo
DRAM die area for the current Interposer | L] A |I
HBM2 : ____________ i

Off-chip 1/0

13

Scalable and Energy-Efficient Architecture Lab (SEAL)

GPU: Bandwidth Scaling Challenge

* Raw memory bandwidth =

(the number of I/Os) X (data rate) DRAM die

DRAM die

. Increasing-will have DRAM die

signal integrity issues and increase
power consumption as well

DRAM die

Base Logic die PHY PHY | GPU

Interposer

14

Scalable and Energy-Efficient Architecture Lab (SEAL)

Summary

* Image processing is important in many application domains

e GPU suffers from memory bandwidth bottleneck:
» Software: image processing pipelines are wide and heterogeneous
* Hardware: GPU has bandwidth scaling challenges

How to design a programmable image processing accelerator
to provide more memory bandwidth?

15

Scalable and Energy-Efficient Architecture Lab (SEAL)

3D-Stacking Processing-in-memory (PIM) Architecture
* Key idea:

* Integrate computation logic closer to physical memory in order to increase
memory bandwidth and reduce data movement energy

GPU + 3D memory

Data
M :: movement
path
M — : [] DRAM die
/ [s [[] Basedie
/ L}LI / Mf iy [] Interposer
[] GPU

il TSVs

16

Scalable and Energy-Efficient Architecture Lab (SEAL)

3D-Stacking Processing-in-memory (PIM) Architecture
* Key idea:

* Integrate computation logic closer to physical memory in order to increase
memory bandwidth and reduce data movement energy

GPU + 3D memory Process-on-base-die
Data
M :: movement
path
M —> [] DRAMdie
/ LZS [[] Basedie
LH [wmcl] |
] | o | 4_ [] Interposer
[] GPU

Off-chip 1/0 bound \ Wi TSVs
Move core to base die 17

Scalable and Energy-Efficient Architecture Lab (SEAL)

3D-Stacking Processing-in-memory (PIM) Architecture

* Key idea:

* Integrate computation logic closer to physical memory in order to increase

memory bandwidth and reduce data movement energy

GPU + 3D memory

Jsarif

=

/ [L2s /)
[T [) e T]

/ &

Off-chip I/0 bound \

Process-on-base-die

Near-bank Arch

impl
/Bank#logﬁ.’f/

Jsantiee [

fm

arge bank-level bandwidth

TSV 1/0 bound \L
Move core to base die

Move logic near banks

Data
movement
path

DRAM die
Base die

Interposer

GPU
TSVs

18

Scalable and Energy-Efficient Architecture Lab (SEAL)

Ccopy

COPY
L isua iDDA .ADD . o
by —~ —{oown - s
DOWN} A{p | oon W Up& o
-, — Toom - B 5 W T
”
:

DOWN | {2 :
'1 DOWN : \ :
upP DDA W up

!
i
e

DOWN }
] —
COPY copy

Application

Complex computation and
memory access patterns

eor /] /7 Resource

constraints
iy

)
t
©
S
o
L
©
-

19

Scalable and Energy-Efficient Architecture Lab (SEAL)

Ccopy

COPY
' 9-0-" _p-a P
; DOWN re S
DOWN | p oo 5
W i W N 5 l
- l SUBl . ADD .
| DOWN : \ : 7
DOWNl uP é DDA W up
- 1 [] — B > .
: CoPY '

CoPY

Application

Complex computation and
memory access patterns

D Resource Lightweight programmable

/ constraints architecture for image

)
t
©
S
o
L
©
-

[. .
processing domain

20

Scalable and Energy-Efficient Architecture Lab (SEAL)

COoPY

= - . = . e

—‘—l—» e
DOWN \ A

DDA up - :‘u,," -

[|
.1DOWN | ﬁ’.

Complex computation and
memory access patterns Concise yet powerful

Instruction Set Architecture (ISA)
D Resource Lightweight programmable

/ constraints architecture for image

)
t
©
S
o
L
©
-

[. .
processing domain

21

Scalable and Energy-Efficient Architecture Lab (SEAL)

Challenges for near-bank architecture

Application

Complex computation and
memory access patterns

eor /] /7 Resource

constraints
/ iy

)
t
©
S
o
L
©
-

End-to-end software support:
 Programming interface
* Compiler optimization

Concise yet powerful
Instruction Set Architecture (ISA)

Lightweight programmable
architecture for image
processing domain

22

Scalable and Energy-Efficient Architecture Lab (SEAL)

Key Contributions

 iPIM: A decoupled control-execution architecture

> Execution
PG| PE | ...| PE —‘
| I I |
/ B k#»E ti / NIe TSIV
an Xxecution
. VSM H . Arbiter e Controller
/ Bank#»Executlon / D o 3
pc » 13
/ Control / / / CtrlRF Inst. Fetch R Instruction Inst.
| & Decode Issue Commit
A v
k Int. Issued Inst. |
> | ALU Queue |

23

Scalable and Energy-Efficient Architecture Lab (SEAL)

Key Contributions

* Lightweight programmable arch: A decoupled control-execution architecture
 Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA

BankO Bank1 cos Bank31

]
I
‘ TSV

OP operands SIMB_mask

Instruction

Control

24

Scalable and Energy-Efficient Architecture Lab (SEAL)

Key Contributions

* Lightweight programmable arch: A decoupled control-execution architecture
 Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
* End-to-end compilation flow: Halide-iPIM

"""

Halide Frontend . Algorithm —» Schedule —» Halhide =~ Halide _
| Optimization Module |

iPIM Backend L Instruct.lon — Reglst.er Instructl.on Exec?uFable
| Lowering Allocation Reordering (*.1pim)

Scalable and Energy-Efficient Architecture Lab (SEAL)

iIPIM: High-level Arch Design Overview

* 3D-stacking, near-bank processing-in-memory architecture

* Hierarchical design with good scalability
e Cube — Vault — Process Group (PG) — Process Engine (PE)
* A Process Engine (PE) contains a DRAM bank and simple logic components

-
-
-
-
————

e 71 1 +;7TSV |/ | TTTTmmeee—___
Z_ 1 / -
- T 7 E PE |... PE
yA 4 /
L7 [&
< < =] Z
= — &/ 2m =
- — = < 3
. o
: Z / Ug @
o PG Scratchpad Memory
i i o

26

More details on the next page

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the
base logic die;

* Back-end (simple logic and memory-intensive) execution components are
placed on the DRAM dies.

PG| PE | ...| PE —‘ Execution
Control i . Components
Components NI¢ ISV (DRAM dies)
(logic die) 2 , SIMB
VSM % + Arbiter [« Controller
pc » I$
A\ 4
CtrIRF Inst. Fetch _| Instruction Inst.
& Decode | Issue Commit
A v
Int. Issued Inst.

A

ALU Queue 27

Scalable and Energy-Efficient Architecture Lab (SEAL)

base logic die;

o Control Flow

NIC

Vault Architecture

* Key idea: Decoupled Control-Execution Architecture
* Front-end (complex logic) control components of the core are placed on the

* Back-end (simple logic and memory-intensive) execution components are
placed on the DRAM dies.

PG

TSV

VSM

XN

pcC

I$

Arbiter

A

CtrlIRF

Inst. Fetch

& Decode

Int.
ALU

A 4

Instruction

Issue

A

A 4

Issued Inst.
Queue

A

Controller

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the
base logic die;

* Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

NIC

VSM

XN

PG| PE

.| PE

W

TSV

pcC

I$

Arbiter

A

CtrlIRF

Inst. Fetch
& Decode

Int.
ALU

9 Data Dependency Check

A 4

Instruction
Issue

A

A 4

Issued Inst.
Queue

SIMB
Controller

A 4

In

st.

Commit

A

29

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the
base logic die;

* Back-end (simple logic and memory-intensive) execution components are
placed on the DRAM dies.

PG| PE | ...| PE —‘
e Remote Access T I
NIC TSV
Vault Scratchpad < : SIMB
9 Memory Access viM g % . Arbiter [0 ntroller
pc » 1S
e Instruction Broadcast
\ 4
CtrlIRF Inst. Fetch _| Instruction Inst.
& Decode | Issue Commit
A v

Int. Issued Inst. |

ALU Queue | 30

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the

base logic die;

* Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

e Near-bank Execution

Parallel memory accesses
-bank-level bandwidth

PG| PE PE
|
NIC TSV
= , SIMB
VSM % Arbiter Controller
A
pc » I$
CtrIRF Inst. Fetch _| Instruction
& Decode | Issue
A v
Int. Issued Inst. |
ALU Queue |

Inst.
Commit

31

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture

* Key idea: Decoupled Control-Execution Architecture

* Front-end (complex logic) control components of the core are placed on the
base logic die;

* Back-end (simple logic and memory-intensive) execution components are
placed on the DRAM dies.
PG| PE | ...| PE —‘

NIC TSV
< : SIMB

VSM = % . Arbiter [ntroller

pc 1$ 6 Instruction Finish
\ 4
CtrlIRF Inst. Fetch _| Instruction Inst.
& Decode | Issue Commit
A v

Int. Issued Inst. |

ALU Queue 32

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA

* Enable massive bank-level concurrent execution to exploit data parallelism

Example: load data from the DRAM bank to the local data register file (DataRF)

Massive bank-level concurrent execution

) PGO0 PG7
Uniform PE
PEO | ...| PE3 ... ||PEO| ...| PE3
accesses
Instruction TSV
broadcast Atbiter | SIMB
Controller

1d_rf

Active bank

33

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA

* Enable massive bank-level concurrent execution to exploit data parallelism

e SIMD interface to exploit abundant bank-level bandwidth
Example: load data from the DRAM bank to the local data register file (DataRF)

Massive bank-level concurrent execution SIMD interface for local bank access
peel — Ctrl. Path
,,,,,,, 21, g — Addr. Path
. PGO PG7 | 5] — Data Path
Uniform PE 1 = 128b
PEO | ...| PE3 ... || PEO | ...| PE3 =
accesses ! £ + 1
AA
@)
2
g —>¢ —toDataRF
Instruction TSV e > i)
broadcast Arbiter je—] OTMB]
Controller
1d_rf > _
Active bank Z| =

34

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA

* Predicate execution (simb_mask) to allow divergent bank-level accesses / computations

PGO PG7
peo | . [PE3 . pro | . [Pr3 = = —— Id_rf dram_addrl drf_addrl 0x8888
Divergent
PE accesses
PGO PG7
pEo | . [PE3 N PEO [rE3 = = —— Id_rf dram_addr2 drf_addr2 Ox1111
Instruction TSV 1d_rf dram_bank_address | datarf _address simb_mask
broadcast Atbiter —| SIMB . . -
Controller |ld_rf instruction 37b

1d_rf

Active bank

35

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA

e Support indirect addressing in image processing domain

Example: access pixel[xi, offset+yi]

cal_arf op dst_arf src_arfl src_arf2 | simb_mask
== Ctrl. Path
~ ;m — Addr. Path
B == Data Path
A A L{i ot
Perform:
JAdarRF) | 54 : dram_address = xi + (offset+yi)*img_width
=1Int. >
ALU R
2=
2| |=
36

SIMB Execution Control

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA

e Support indirect addressing in image processing domain

Example: access pixel[xi, offset+yi

Id_rf dram_bank_address | datarf address | simb_mask

\

This address comes from AddrRF

Q — Ctrl. Path

2, — Addr. Path

5 — Data Path

E

g AA .

o Access local DRAM bank using
= p ¢DataRF .

£| | [jradrRE| | 5 : dram_address stored in AddrRF
=

A 4
A\ 4

\ 4

Arbiter
TSV

37

SIMB Execution Control

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA

* SIMB ISA also supports:

* Data-dependent calculation
 mov_drf/ mov_arf

 Remote data access from different vaults / cubes
* rd_vsm /wr_vsm/req

* Control flow instructions
e jump / cjump / calc_crf / seti_crf

* Synchronization mechanism
* Sync

* Please refer to the paper for more details

38

Scalable and Energy-Efficient Architecture Lab (SEAL)

End-to-end compilation support: Halide-iPIM

e Halide

* A domain specific programming language and toolchain for image processing

* It decouples the algorithm descriptions and the schedules to hardware mapping

Example: image blur

// Algorithm

Func blurx(x, y) = (in(x- 1, y) +in(x, y)
+in(x +1,y)) / 3.0f;

Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)
+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM

out.compute_root()
.ipim_tile(x, y, xi, yi, 8, 8)
Jdoad_pgsm(xi, yi)
vectorize(xi, 4);

39

Scalable and Energy-Efficient Architecture Lab (SEAL)

End-to-end compilation support: Halide-iPIM

 Halide-iPIM

* We extend Halide frontend to support customized schedules for iPIM
* We leverage existing Halide schedules for pipeline fusion and vectorization on iPIM

| Halide , Halide Halide
. Frontend Algening Schedule Optimization Module

40

Scalable and Energy-Efficient Architecture Lab (SEAL)

End-to-end compilation support: Halide-iPIM

 Halide-iPIM

* We extend Halide frontend to support customized schedules for iPIM
* We leverage existing Halide schedules for pipeline fusion and vectorization on iPIM
* We develop three backend optimizations for iPIM

Halide , | Halide | Halide |
' Frontend Algorithm —p> Schedule Optimization Module _|
-~ iPIM Instruction Register Instruction Executable
- Backend Lowering Allocation Reordering (*.ipim)

e e e o e 1 e ; a1

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Frontend Schedules

* Two new schedule primitives:

e distribute data into different banks

cube cube
0,0 (@10 &
; b

An image

PGO

PG1 |

Example: image blur

// Algorithm

Func blurx(x, y) = (in(x - 1, y) + in(x, y)
+in(x + 1, y)) / 3.0f;

Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)
+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

Jload_pgsm(xi, yi)

vectorize(xi, 4);

ATile

A

vault | vault
0,0) | 1,0
vault \
0,1)

PG2

PG3

PE(

PE1

PG4

PGS

Ay
\
AY
A Y
AY
\
AY
\
\
N
M

PG7

1
1
\
\
)
1
1
1
A\

PE3 Itile Yy

A sub-image

A Block

g p!

iile_x

A Patch

42

Scalable and Energy-Efficient Architecture Lab (SEAL)

Example: image blur
Halide-iPIM: Frontend Schedules o it vl i v
+in(x + 1, y)) / 3.0f;

* Two new schedule primitives: Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;
* load _pgsm()

« Utilize the scratchpad of a processing group (PG) // Schedule for iPIM
out.compute_root()

ipim_tile(x, y, xi, yi, 8, 8)
Joad_pgsm(xi, yi)
.vectorize(xi, 4);

load_pgsm(Xxi, yi)
Currently in PGSM Load for next stage

[]

Non-overlapping PE3|| [PE2|| [PE3|| [PE2| | PE3|| PE2

[]

Overlapping (Halo) PE1}| PEO|| PE1|||PEO| | PE1|||PEO

Working Set (Current Stage)
[] Working Set (Next Stage)

PE3}| PE2| | |PE3|||PE2| | PE3|||PE2

PE1| | PEO| | |PE1| | [PEO| | PE1 | PEO

uROS I0)SBY I\I\

43

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Frontend Schedules

* Leverage existing schedule primitives:
* Specify pipeline fusing
* vectorize()
* Align data to improve utilization of SIMD units

Example: image blur

// Algorithm

Func blurx(x, y) = (in(x - 1, y) + in(x, y)
+in(x +1,y))/ 3.0f;

Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)
+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM

out.
.ipim_tile(x, y, xi, vi, 8, 8)
Jdoad_pgsm(xi, yi)
.vectorize(xi, 4);

44

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Backend Optimizations

e Optimization objectives:

Instruction-level DRAM row buffer
parallelism locality

* Our techniques:

Register max Instruction Memory order
spanning reordering enforcement

45

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Backend Optimizations

Example: Image Brightening

Input image in DRAM Pixels in register file Output image in DRAM
| . e———

; »[] > e
d_rf comp st_rf

IPIM instructions

46

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Backend Optimizations

Example: Image Brightening

|d_rf (DOx0, ROx0)
comp (ROx0, ROx0, 0x2, MUL)

comp (ROXO, ROx0, 0x2, MUL) ———————

Register st_rf (DOx40, ROx0)
dependency |ld_rf (DOx1, ROx0)
Register st_rf (DOx41, ROx0)
dependency |ld_rf (DOx2, ROx0)

comp (ROx0, ROx0, 0x2, MUL)
st_rf (DOx42, ROx0)

Register max
spanning

|d_rf (DOx0, ROx0)

comp (ROx0, ROx0, 0x2, MUL)

st_rf (DOx40, ROx0)

|d_rf (DOx1, ROx1) > Eliminate
comp (ROx1, ROx1, 0x2, MUL) register
st_rf (DOx41, ROx1) dependency
|d_rf (DOx2, ROx2) >

comp (ROx2, ROx2, 0x2, MUL)

st_rf (DOx42, ROx2)

47

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Backend Optimizations

Example: Image Brightening

Load

latency ld_rf (DOxO, ROx0)

stall comp (ROx0, ROx0, 0x2, MUL)
st_rf (DOx40, ROx0)

Load

|d_rf (DOx1, ROx1)
lat - '
atency C comp (ROx1, ROx1, 0x2, MUL)

st_rf (DOx42, ROx2)
|d_rf (DOx0, ROx2)
comp (ROx2, ROx2, 0x2, MUL)
st_rf (DOx42, ROx2)

Instruction
reordering

—

Overlap
memory
access

|d_rf (DOx0, ROx0)

|d_rf (DOx1, ROx1)

comp (ROx0, ROx0, 0x2, MUL) 4/
comp (ROx1, ROx1, 0x2, MUL) latency
st_rf (DOx40, ROx0)

st_rf (DOx41, ROx1)

|d_rf (DOx2, ROx2)

comp (ROx2, ROx2, 0x2, MUL)

st_rf (DOx42, ROx2)

\J

48

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Backend Optimizations

Example: Image Brightening

|d_rf (DOx0, ROxO0)
Id_rf (DOx1, ROx1)
comp (ROx0, ROx0, 0x2, MUL)
comp (ROx1, ROx1, 0x2, MUL)
Disrupt st_rf (DOx40, ROx0)
row C st_rf (DOx41, ROx1)
buffer |d_rf (DOx2, ROx2)
locality comp (ROx2, ROx2, 0x2, MUL)
st_rf (DOx42, ROx2)

Memory order
enforcement

—

|d_rf (DOxO, ROxO0) All loads to
|d_rf (DOx1, ROx1)
Id_rf (DOX2, ROX2) the same
row buffer
comp (ROx0, ROx0, Ox2, MUL) Enforce
comp (ROx1, ROx1, 0x2, MUL) memory
comp (ROx2, ROx2, 0x2, MUL)
, order
st_rf (DOx40, ROx0) All stores to
st_rf (DOx41, ROx1)
the same

st_rf (DOx42, ROx2)

row buffer

49

Scalable and Energy-Efficient Architecture Lab (SEAL)

Evaluations

50

Scalable and Energy-Efficient Architecture Lab (SEAL)

m SIMD Unit

mInt ALU

m AddrRF
DataRF

m MC

m PGSM
Original DRAM die area

Area overhead of added components per DRAM die: 10.71%
* Conservatively assume 2x area overhead in DRAM process

Area of control logic on base die: 0.92mm? (fits in 3.5mm? extra area per vault)

51

Scalable and Energy-Efficient Architecture Lab (SEAL)

iIPIM (Near-bank Arch) v.s. GPU

Speedup (w.r.t. GPU) X Energy Saving (w.r.t. GPU)

0 21.09x 43.78x
18 [1% X X = X
o 18 X X X
212 X
o 10
a 8
7§
2
0
N S < > : S '
& & & = 2 N © AP C
> Gjb' %‘b' é\,o < @'(Q Q N
A3 &R S 3 & > 0
S NN N
Q > Oo‘b c:)\
x)

Energy Saving (%)

 11.02x average speedup
* 79.49% average energy saving

Compared to GPU baseline, iPIM achieves:

52

Scalable and Energy-Efficient Architecture Lab (SEAL)

iIPIM (Near-bank Arch) v.s. Process-on-base-die

Speedup (w.r.t. base-die) XEnergy Saving (w.r.t. base-die)

Speedup
=W RN\
X

Energy Saving (%)

Compared to process-on-base-die solution, iPIM achives:
 3.61x average speedup
* 56.71% average energy saving

53

Scalable and Energy-Efficient Architecture Lab (SEAL)

Effectiveness of iPIM Compiler Optimizations

mopt v.s. baselinel mopt v.s. baseline2
opt v.s. baseline3 opt v.s. baseline4
4.5 o
3451 opt: Apply all 3 optimizations
573 baselinel: No optimizations
?é 2'3 baseline2: No register allocation optimization
o 1-? baseline3: No instruction reordering
0.5 baseline4: No memory ordering enforcement
0
$ ¥ & IS ¥ & & &
-@? ¢ %‘7’6& %‘7’6& = @Q}‘b ‘960 > Q\%C} %CQ& &
. . Q
® 04@ S ¥ .gb\é \&6 \\;b S G
Q % \)oo‘b' C‘)\;

All three compiler backend optimizations together provide 3.19x speedup
compared to unoptimized program

Instruction reordering is most effective: maximize instruction level parallelism | .,

Scalable and Energy-Efficient Architecture Lab (SEAL)

iIPIM Key Takeaways:

Lightweight programmable arch: A decoupled control-execution architecture
Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
End-to-end compilation flow: Halide-iPIM

Evaluation results:
e 11.02x speedup and 79.49% energy savings over state-of-the-art GPU accelerator
* 3.61x speedup and 56.71% energy savings over the process-on-base-die solution
e Overall compiler optimizations provide 3.19x speedup over unoptimized baseline

55

Scalable and Energy-Efficient Architecture Lab (SEAL)

iIPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

Thank you!
Q&A

€L

Alibaba

56

