
Scalable and Energy-Efficient Architecture Lab (SEAL)

iPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

Peng Gu*1, Xinfeng Xie*1, Yufei Ding1

Guoyang Chen2, Weifeng Zhang2, Dimin Niu2, Yuan Xie1,2

*co-primary first authors
1

1University of California, Santa Barbara
2Alibaba Group

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Application Scenarios

2

http://www.nectec.or.th/2008/r-d/img.html
https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/m-lab-biomedical-imaging-and-processing
https://clarklabs.org/terrset/idrisi-image-processing/

Medical Image Processing Geographic Information System

Data Center,
Work Station

Traffic AnalysisMachine Learning

Smartphone
Camera

Traffic
Camera

Medical
Imaging
Equipment

Satellite
Imaging

http://www.nectec.or.th/2008/r-d/img.html
https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/m-lab-biomedical-imaging-and-processing
https://clarklabs.org/terrset/idrisi-image-processing/

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Application Scenarios

3

http://www.nectec.or.th/2008/r-d/img.html
https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/m-lab-biomedical-imaging-and-processing
https://clarklabs.org/terrset/idrisi-image-processing/

Medical Image Processing Geographic Information System

Data Center,
Work Station

Traffic AnalysisMachine Learning

Smartphone
Camera

Traffic
Camera

Medical
Imaging
Equipment

Satellite
Imaging

Image
Processing
Accelerator

High Performance
High Energy Efficiency

Domain Programmability

http://www.nectec.or.th/2008/r-d/img.html
https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/m-lab-biomedical-imaging-and-processing
https://clarklabs.org/terrset/idrisi-image-processing/

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Characteristics
• Image Processing algorithms consist of pipeline stages that are both

wide and heterogeneous
• Each stage is wide – Example: Image Blur

4

Image blur filter Image blur output
Filter scan order

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Characteristics
• Image Processing algorithms consist of pipeline stages that are both

wide and heterogeneous
• Each stage is wide – Example: Image Blur

5

1
Memory-level
parallelism
among pixels

Large size of
intermediate
data

2

Low arithmetic
density operations3

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Characteristics
• Image Processing algorithms consist of pipeline stages that are both

wide and heterogeneous
• Overall pipelines are heterogeneous – Example: Local Laplacian Filter

https://dl.acm.org/doi/pdf/10.1145/2499370.2462176

COPY
COPY

LUT

COPY

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DDA

DDA

DDA

ADD

ADD

SUB

SUB

COPY

UP

UP

UP

UP

UP

6

https://dl.acm.org/doi/pdf/10.1145/2499370.2462176

Scalable and Energy-Efficient Architecture Lab (SEAL)

Image Processing: Characteristics
• Image Processing Algorithms consist of pipeline stages that are both

wide and heterogeneous

Image processing workloads have high memory bandwidth demand:

• Software: low temporal reuse due to
• (1) low arithmetic density
• (2) difficulty of pipeline fusion

• Hardware: on-chip cache cannot hold all intermediate data

7

Scalable and Energy-Efficient Architecture Lab (SEAL)

Motivation Data: Memory Bandwidth Bottleneck
• On average: 57.55% memory utilization v.s. 3.43% ALU utilization
• Benchmark: single-stage / multi-stage kernels
• Configuration: Halide toolchain on a Tesla V100 GPU

8

0
20
40
60
80
100

0
200
400
600
800

Brig
hten Blur

Dow
nsam

ple

Upsam
ple

Shift

Hist
og

ram

Bila
ter

al
Grid

Inter
pola

te

Loca
l L

ap
lac

ian

Sten
cil

 Chain

Geom
ean

U
til

iz
at

io
n

(%
)

Ba
nd

w
id

th

(G
B/

s)

DRAM bandwidth DRAM utilization ALU utilization

Scalable and Energy-Efficient Architecture Lab (SEAL)

Motivation Data: Memory Bandwidth Bottleneck

9

0
20
40
60
80
100

0
200
400
600
800

Brig
hten Blur

Dow
nsam

ple

Upsam
ple

Shift

Hist
og

ram

Bila
ter

al
Grid

Inter
pola

te

Loca
l L

ap
lac

ian

Sten
cil

 Chain

Geom
ean

U
til

iz
at

io
n

(%
)

Ba
nd

w
id

th

(G
B/

s)

DRAM bandwidth DRAM utilization ALU utilization

Single-stage kernels
ALU utilization: 2.85%

DRAM utilization: 58.80%

Multi-stage kernels
ALU utilization: 4.53%

DRAM utilization: 55.73%

Scalable and Energy-Efficient Architecture Lab (SEAL)

Motivation Data: Memory Bandwidth Bottleneck

10

0
20
40
60
80
100

0
200
400
600
800

Brig
hten Blur

Dow
nsam

ple

Upsam
ple

Shift

Hist
og

ram

Bila
ter

al
Grid

Inter
pola

te

Loca
l L

ap
lac

ian

Sten
cil

 Chain

Geom
ean

U
til

iz
at

io
n

(%
)

Ba
nd

w
id

th

(G
B/

s)

DRAM bandwidth DRAM utilization ALU utilization

Left: single-stage kernels
ALU utilization: 2.85%

Memory utilization: 58.80%

Right: multi-stage kernels
ALU utilization: 4.53%

Memory utilization: 55.73%

Pipeline optimization does not change memory-bound behavior of
image processing workloads on GPU

Scalable and Energy-Efficient Architecture Lab (SEAL)

GPU: Bandwidth Scaling Challenge

11

GPU provides the highest memory bandwidth: High Bandwidth Memory (HBM)
provides large bandwidth by 3D die-stacking technology

DRAM die

DRAM die

DRAM die

DRAM die

Base Logic die PHY

Interposer

GPUPHY

3D die-stacking

Vertical interconnect: Through Silicon Vias (TSVs)

HBM:
High
Bandwidth
Memory

Interposer Interconnects

Scalable and Energy-Efficient Architecture Lab (SEAL)

GPU: Bandwidth Scaling Challenge

DRAM die

DRAM die

DRAM die

DRAM die

Base Logic die PHY

Interposer

GPUPHY

Vertical interconnect: Through Silicon Vias (TSVs)

Interposer Interconnects

Memory bandwidth wall: memory bandwidth cannot scale with computation throughput
• Off-chip I/O (Interposer Interconnects)
• TSV I/O

12

Scalable and Energy-Efficient Architecture Lab (SEAL)

GPU: Bandwidth Scaling Challenge

• Raw memory bandwidth =
(the number of I/Os) X (data rate)

• Increasing the number of I/Os is
difficult under tight area budget
• Limited off-chip pins
• TSVs already consumes ~18.8%

DRAM die area for the current
HBM2

13

DRAM die

DRAM die

DRAM die

DRAM die

Base Logic die PHY

Interposer

GPUPHY

TSV I/O

Off-chip I/O

Scalable and Energy-Efficient Architecture Lab (SEAL)

GPU: Bandwidth Scaling Challenge

• Raw memory bandwidth =
(the number of I/Os) X (data rate)

• Increasing data rate will have
signal integrity issues and increase
power consumption as well

14

DRAM die

DRAM die

DRAM die

DRAM die

Base Logic die PHY

Interposer

GPUPHY

Scalable and Energy-Efficient Architecture Lab (SEAL)

Summary

• Image processing is important in many application domains
• GPU suffers from memory bandwidth bottleneck:
• Software: image processing pipelines are wide and heterogeneous
• Hardware: GPU has bandwidth scaling challenges

15

How to design a programmable image processing accelerator
to provide more memory bandwidth?

Scalable and Energy-Efficient Architecture Lab (SEAL)

3D-Stacking Processing-in-memory (PIM) Architecture
• Key idea:
• Integrate computation logic closer to physical memory in order to increase

memory bandwidth and reduce data movement energy

16

L2$

SIMT
core

MC

Bank

Bank

TSVs

DRAM die

Base die

Interposer

GPU

Data
movement
path

GPU + 3D memory

…

Scalable and Energy-Efficient Architecture Lab (SEAL)

3D-Stacking Processing-in-memory (PIM) Architecture
• Key idea:
• Integrate computation logic closer to physical memory in order to increase

memory bandwidth and reduce data movement energy

17

L2$

SIMT
core

MC

Bank Bank

core

Bank Bank

TSVs

DRAM die

Base die

Interposer

GPU

Data
movement
path

Process-on-base-dieGPU + 3D memory

Off-chip I/O bound

Move core to base die

…

Scalable and Energy-Efficient Architecture Lab (SEAL)

3D-Stacking Processing-in-memory (PIM) Architecture
• Key idea:
• Integrate computation logic closer to physical memory in order to increase

memory bandwidth and reduce data movement energy

18

L2$

SIMT
core

MC

Bank Bank

core

Bank

Bank Bank

simple
logic

Bank simple
logic

TSVs

DRAM die

Base die

Interposer

GPU

Data
movement
path

Process-on-base-die Near-bank ArchGPU + 3D memory

Off-chip I/O bound TSV I/O bound

Move core to base die Move logic near banks

Large bank-level bandwidth

…

Scalable and Energy-Efficient Architecture Lab (SEAL)

Challenges for near-bank architecture

19

Bank simple
logic

Bank simple
logic

Ap
pl

ic
at

io
n

Ha
rd

w
ar

e

Complex computation and
memory access patterns

Resource
constraints

Scalable and Energy-Efficient Architecture Lab (SEAL)

Challenges for near-bank architecture

20

Lightweight programmable
architecture for image
processing domain

Bank simple
logic

Bank simple
logic

Ap
pl

ic
at

io
n

Ha
rd

w
ar

e

Complex computation and
memory access patterns

Resource
constraints

Scalable and Energy-Efficient Architecture Lab (SEAL)

Challenges for near-bank architecture

21

Concise yet powerful
Instruction Set Architecture (ISA)

Lightweight programmable
architecture for image
processing domain

Bank simple
logic

Bank simple
logic

Ap
pl

ic
at

io
n

Ha
rd

w
ar

e

Complex computation and
memory access patterns

Resource
constraints

Scalable and Energy-Efficient Architecture Lab (SEAL)

Challenges for near-bank architecture

22

End-to-end software support:
• Programming interface
• Compiler optimization

Concise yet powerful
Instruction Set Architecture (ISA)

Lightweight programmable
architecture for image
processing domain

Bank simple
logic

Bank simple
logic

Ap
pl

ic
at

io
n

Ha
rd

w
ar

e

Complex computation and
memory access patterns

Resource
constraints

Scalable and Energy-Efficient Architecture Lab (SEAL)

• iPIM: A decoupled control-execution architecture

23

Key Contributions

VSM

I$

Inst. Fetch
& Decode

Instruction
Issue

Inst.
Commit

TSV

Issued Inst.
Queue

PE PE…PG

M
U

X

Control
Arbiter

pc

CtrlRF

Int.
ALU

SIMB
Controller

NIC

Execution

Bank Execution

Bank Execution

Control

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Lightweight programmable arch: A decoupled control-execution architecture
• Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA

24

Key Contributions

TSV

Bank0

Control

Bank1 Bank31…

OP operands SIMB_mask

Instruction

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Lightweight programmable arch: A decoupled control-execution architecture
• Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
• End-to-end compilation flow: Halide-iPIM

25

Key Contributions

Algorithm Schedule Halide
Module

Halide
Optimization

Instruction
Lowering

Register
Allocation

Instruction
Reordering

Halide Frontend

iPIM Backend Executable
(*.ipim)

Scalable and Energy-Efficient Architecture Lab (SEAL)

iPIM: High-level Arch Design Overview
• 3D-stacking, near-bank processing-in-memory architecture
• Hierarchical design with good scalability
• Cube – Vault – Process Group (PG) – Process Engine (PE)
• A Process Engine (PE) contains a DRAM bank and simple logic components

26

PE
PE

…

PG Scratchpad Memory

A
rbiter

TSV
PE

PG

PG

iPIM
Core

TSVPIM
 dies

logic die

..

..

..

Vault

Vault

cube cube

..

MC

More details on the next page

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the

base logic die;
• Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

27

VSM

I$

Inst. Fetch
& Decode

Instruction
Issue

Inst.
Commit

TSV

Issued Inst.
Queue

PE PE…PG

M
U

X

Control
Components
(logic die) Arbiter

pc

CtrlRF

Int.
ALU

SIMB
Controller

NIC

Execution
Components
(DRAM dies)

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the

base logic die;
• Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

28

VSM

I$

Inst. Fetch
& Decode

Instruction
Issue

Inst.
Commit

TSV

Issued Inst.
Queue

PE PE…PG

M
U

X Arbiter

pc

CtrlRF

Int.
ALU

Control Flow1
SIMB

Controller

NIC

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the

base logic die;
• Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

29

VSM

I$

Inst. Fetch
& Decode

Instruction
Issue

Inst.
Commit

TSV

Data Dependency Check
Issued Inst.

Queue

PE PE…PG

M
U

X Arbiter

pc

CtrlRF

Int.
ALU

2

SIMB
Controller

NIC

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the

base logic die;
• Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

30

VSM

I$

Inst. Fetch
& Decode

Instruction
Issue

Inst.
Commit

TSV

Instruction Broadcast

Issued Inst.
Queue

PE PE…PG

M
U

X

Remote Access

Arbiter

pc

CtrlRF

Int.
ALU

3

SIMB
Controller

NIC

3

Vault Scratchpad
Memory Access3

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the

base logic die;
• Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

31

VSM

I$

Inst. Fetch
& Decode

Instruction
Issue

Inst.
Commit

TSV

Issued Inst.
Queue

PE PE…PG Near-bank Execution

M
U

X Arbiter

pc

CtrlRF

Int.
ALU

4

SIMB
Controller

NIC
Parallel memory accesses
àbank-level bandwidth

Scalable and Energy-Efficient Architecture Lab (SEAL)

Vault Architecture
• Key idea: Decoupled Control-Execution Architecture
• Front-end (complex logic) control components of the core are placed on the

base logic die;
• Back-end (simple logic and memory-intensive) execution components are

placed on the DRAM dies.

32

VSM

I$

Inst. Fetch
& Decode

Instruction
Issue

Inst.
Commit

TSV

Instruction Finish

Issued Inst.
Queue

PE PE…PG

M
U

X Arbiter

pc

CtrlRF

Int.
ALU

5

SIMB
Controller

NIC

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA
• Enable massive bank-level concurrent execution to exploit data parallelism

Example: load data from the DRAM bank to the local data register file (DataRF)

33

TSV

PE0 PE3…
PG0

Arbiter SIMB
Controller

PE0 PE3…
PG7

…

Instruction
broadcast

Massive bank-level concurrent execution

Uniform PE
accesses

Active bank

ld_rf

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA
• Enable massive bank-level concurrent execution to exploit data parallelism
• SIMD interface to exploit abundant bank-level bandwidth
Example: load data from the DRAM bank to the local data register file (DataRF)

34

Bank

MUX

DataRF

SIMD
Unit

M
em

or
y

C
on

tro
lle

r (
M

C
)

AddrRF

TS
V

Int.
ALU

PGSM

A
rb

ite
r

MUX

M
U

X

MUX

M
U

X

Ctrl. Path
Addr. Path
Data Path

TSV

PE0 PE3…
PG0

Arbiter SIMB
Controller

PE0 PE3…
PG7

…

Instruction
broadcast

Massive bank-level concurrent execution SIMD interface for local bank access

128bUniform PE
accesses

Active bank

ld_rf

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA

• Predicate execution (simb_mask) to allow divergent bank-level accesses / computations

35

TSV

PE0 PE3…
PG0

Arbiter SIMB
Controller

PE0 PE3…
PG7

…

ld_rf dram_bank_address datarf_address

ld_rf instruction

simb_maskInstruction
broadcast

Divergent
PE accesses

32b

ld_rf dram_addr1 drf_addr1 0x8888PE0 PE3…
PG0

PE0 PE3…
PG7

…

ld_rf dram_addr2 drf_addr2 0x1111

Active bank
ld_rf

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA
• Support indirect addressing in image processing domain
Example: access pixel[xi, offset+yi]

36

cal_arf op dst_arf simb_masksrc_arf1 src_arf2

Bank

MUX

DataRF

SIMD
Unit

M
em

or
y

C
on

tro
lle

r (
M

C
)

AddrRF
TS

V

Int.
ALU

PGSM

A
rb

ite
r

MUX
M

U
X

MUX

M
U

X

Ctrl. Path
Addr. Path
Data Path

SIMB Execution Control

Perform:
dram_address = xi + (offset+yi)*img_width

Scalable and Energy-Efficient Architecture Lab (SEAL)

Single-Instruction-Multiple-Bank (SIMB) ISA
• Support indirect addressing in image processing domain
Example: access pixel[xi, offset+yi]

37

Bank

MUX

DataRF

SIMD
Unit

M
em

or
y

C
on

tr
ol

le
r (

M
C

)

AddrRF
TS

V

Int.
ALU

PGSM

A
rb

ite
r

MUX

M
U

X

MUX

M
U

X
Ctrl. Path
Addr. Path
Data Path

ld_rf dram_bank_address datarf_address simb_mask

SIMB Execution Control

This address comes from AddrRF

Access local DRAM bank using
dram_address stored in AddrRF

Scalable and Energy-Efficient Architecture Lab (SEAL)

• SIMB ISA also supports:
• Data-dependent calculation

• mov_drf / mov_arf
• Remote data access from different vaults / cubes

• rd_vsm / wr_vsm / req
• Control flow instructions

• jump / cjump / calc_crf / seti_crf
• Synchronization mechanism

• Sync

• Please refer to the paper for more details

38

Single-Instruction-Multiple-Bank (SIMB) ISA

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Halide
• A domain specific programming language and toolchain for image processing
• It decouples the algorithm descriptions and the schedules to hardware mapping

39

End-to-end compilation support: Halide-iPIM

// Algorithm
Func blurx(x, y) = (in(x - 1, y) + in(x, y)

+ in(x + 1, y)) / 3.0f;
Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

.ipim_tile(x, y, xi, yi, 8, 8)

.load_pgsm(xi, yi)

.vectorize(xi, 4);

Example: image blur

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Halide
• An domain specific programming language and toolchain for image processing
• It decouples the algorithm descriptions and the schedules to hardware mapping

• Halide-iPIM
• We extend Halide frontend to support customized schedules for iPIM
• We leverage existing Halide schedules for pipeline fusion and vectorization on iPIM

40

End-to-end compilation support: Halide-iPIM

Algorithm Schedule Halide
Module

Halide
Optimization

Halide
Frontend

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Halide
• An domain specific programming language and toolchain for image processing
• It decouples the algorithm descriptions and the schedules to hardware mapping

• Halide-iPIM
• We extend Halide frontend to support customized schedules for iPIM
• We leverage existing Halide schedules for pipeline fusion and vectorization on iPIM
• We develop three backend optimizations for iPIM

41

End-to-end compilation support: Halide-iPIM

Algorithm Schedule Halide
Module

Halide
Optimization

Instruction
Lowering

Register
Allocation

Instruction
Reordering

Halide
Frontend

iPIM
Backend

Executable
(*.ipim)

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Two new schedule primitives:
• ipim_tile()

• distribute data into different banks

42

Halide-iPIM: Frontend Schedules
Example: image blur

cube
(0,0)

cube
(0,1)

vault
(0,0)

vault
(0,1)

PG0
PG2
PG4
PG6

PG3
PG5
PG7

… …

cube
(1,0)

vault
(1,0)

PG1

tile_x

tile_y

An image A sub-image A Block

A Tile

A Patch

PE0 PE1

PE2 PE3

ipim_tile(x, y, xi, yi, 8, 8)

// Algorithm
Func blurx(x, y) = (in(x - 1, y) + in(x, y)

+ in(x + 1, y)) / 3.0f;
Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

.ipim_tile(x, y, xi, yi, 8, 8)

.load_pgsm(xi, yi)

.vectorize(xi, 4);

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Two new schedule primitives:
• load_pgsm()

• Utilize the scratchpad of a processing group (PG)

43

Example: image blur

PE0

PE2

PE1

PE3

PE3

PE1

PE3

PE1

PE2

PE0

PE3

PE1

PE2

PE0

PE2

PE0

PE0

PE2

PE3

PE1

PE3

PE1

PE2

PE0

Non-overlapping

Overlapping (Halo)

Working Set (Current Stage)

Working Set (Next Stage)

R
aster Scan

Currently in PGSM Load for next stage
load_pgsm(xi, yi)

// Algorithm
Func blurx(x, y) = (in(x - 1, y) + in(x, y)

+ in(x + 1, y)) / 3.0f;
Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

.ipim_tile(x, y, xi, yi, 8, 8)

.load_pgsm(xi, yi)

.vectorize(xi, 4);

Halide-iPIM: Frontend Schedules

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Leverage existing schedule primitives:
• compute_root()

• Specify pipeline fusing
• vectorize()

• Align data to improve utilization of SIMD units

44

Halide-iPIM: Frontend Schedules

Example: image blur

// Algorithm
Func blurx(x, y) = (in(x - 1, y) + in(x, y)

+ in(x + 1, y)) / 3.0f;
Func out(x, y) = (blurx(x, y - 1) + blurx(x, y)

+ blurx(x, y + 1)) / 3.0f;

// Schedule for iPIM
out.compute_root()

.ipim_tile(x, y, xi, yi, 8, 8)

.load_pgsm(xi, yi)

.vectorize(xi, 4);

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Optimization objectives:

45

Halide-iPIM: Backend Optimizations

Instruction-level
parallelism

DRAM row buffer
locality

• Our techniques:

Instruction
reordering

Register max
spanning

Memory order
enforcement

Scalable and Energy-Efficient Architecture Lab (SEAL)

46

Halide-iPIM: Backend Optimizations
Example: Image Brightening

Input image in DRAM Output image in DRAM

ld_rf comp st_rf

Pixels in register file

iPIM instructions

Scalable and Energy-Efficient Architecture Lab (SEAL)

47

Halide-iPIM: Backend Optimizations

ld_rf (D0x0, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x40, R0x0)
ld_rf (D0x1, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x41, R0x0)
ld_rf (D0x2, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x42, R0x0)
…

ld_rf (D0x0, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x40, R0x0)
ld_rf (D0x1, R0x1)
comp (R0x1, R0x1, 0x2, MUL)
st_rf (D0x41, R0x1)
ld_rf (D0x2, R0x2)
comp (R0x2, R0x2, 0x2, MUL)
st_rf (D0x42, R0x2)
…

Register
dependency

Register
dependency

Eliminate
register
dependency

Register max
spanning

Example: Image Brightening

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Backend Optimizations

ld_rf (D0x0, R0x0)
ld_rf (D0x1, R0x1)
comp (R0x0, R0x0, 0x2, MUL)
comp (R0x1, R0x1, 0x2, MUL)
st_rf (D0x40, R0x0)
st_rf (D0x41, R0x1)
ld_rf (D0x2, R0x2)
comp (R0x2, R0x2, 0x2, MUL)
st_rf (D0x42, R0x2)
…

Instruction
reordering

ld_rf (D0x0, R0x0)
comp (R0x0, R0x0, 0x2, MUL)
st_rf (D0x40, R0x0)
ld_rf (D0x1, R0x1)
comp (R0x1, R0x1, 0x2, MUL)
st_rf (D0x42, R0x2)
ld_rf (D0x0, R0x2)
comp (R0x2, R0x2, 0x2, MUL)
st_rf (D0x42, R0x2)
…

Load
latency
stall
Load
latency
stall

Overlap
memory
access
latency

48

Example: Image Brightening

Scalable and Energy-Efficient Architecture Lab (SEAL)

Halide-iPIM: Backend Optimizations

ld_rf (D0x0, R0x0)
ld_rf (D0x1, R0x1)
ld_rf (D0x2, R0x2)
…
comp (R0x0, R0x0, 0x2, MUL)
comp (R0x1, R0x1, 0x2, MUL)
comp (R0x2, R0x2, 0x2, MUL)
…
st_rf (D0x40, R0x0)
st_rf (D0x41, R0x1)
st_rf (D0x42, R0x2)
…

All loads to
the same

row buffer

All stores to
the same

row buffer

Enforce
memory

order

ld_rf (D0x0, R0x0)
ld_rf (D0x1, R0x1)
comp (R0x0, R0x0, 0x2, MUL)
comp (R0x1, R0x1, 0x2, MUL)
st_rf (D0x40, R0x0)
st_rf (D0x41, R0x1)
ld_rf (D0x2, R0x2)
comp (R0x2, R0x2, 0x2, MUL)
st_rf (D0x42, R0x2)
…

Memory order
enforcement

Disrupt
row
buffer
locality

49

Example: Image Brightening

Scalable and Energy-Efficient Architecture Lab (SEAL)

Evaluations

50

Scalable and Energy-Efficient Architecture Lab (SEAL)

51

Area Analysis

Area overhead of added components per DRAM die: 10.71%
• Conservatively assume 2x area overhead in DRAM process

Area of control logic on base die: 0.92mm2 (fits in 3.5mm2 extra area per vault)

SIMD Unit
Int ALU
AddrRF
DataRF
MC
PGSM

iPIM overhead

Original DRAM die area

Scalable and Energy-Efficient Architecture Lab (SEAL)

52

iPIM (Near-bank Arch) v.s. GPU

Compared to GPU baseline, iPIM achieves:
• 11.02x average speedup
• 79.49% average energy saving

0
10
20
30
40
50
60
70
80
90
100

0
2
4
6
8

10
12
14
16
18
20

Brig
hte

n
Blur

Dow
nsa

mple

Upsa
mple Shif

t

Hist
og

ram

Bila
ter

al
Grid

Int
erp

ola
te

Loc
al

Lap
lac

ian

Sten
cil

 Cha
in

Geo
mean

En
er

gy
 S

av
in

g
(%

)

Sp
ee

du
p

Speedup (w.r.t. GPU) Energy Saving (w.r.t. GPU)
21.09x 43.78x

Scalable and Energy-Efficient Architecture Lab (SEAL)

53

iPIM (Near-bank Arch) v.s. Process-on-base-die

0
10
20
30
40
50
60
70
80
90
100

0
1
2
3
4
5
6
7
8
9

10

Brig
hte

n
Blur

Dow
nsa

mple

Upsa
mple Shif

t

Hist
og

ram

Bila
ter

al
Grid

Int
erp

ola
te

Loc
al

Lap
lac

ian

Sten
cil

 Cha
in

Geo
mean

En
er

gy
 S

av
in

g
(%

)

Sp
ee

du
p

Speedup (w.r.t. base-die) Energy Saving (w.r.t. base-die)

Compared to process-on-base-die solution, iPIM achives:
• 3.61x average speedup
• 56.71% average energy saving

Scalable and Energy-Efficient Architecture Lab (SEAL)

54

Effectiveness of iPIM Compiler Optimizations

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Brig
hte

n
Blur

Dow
nsa

mple

Upsa
mple Shif

t

Hist
og

ram

Bila
ter

al
Grid

Int
erp

ola
te

Loc
al

Lap
lac

ian

Sten
cil

 C
ha

in

Geo
mean

Sp
ee

du
p

opt v.s. baseline1 opt v.s. baseline2
opt v.s. baseline3 opt v.s. baseline4

9.35

All three compiler backend optimizations together provide 3.19x speedup
compared to unoptimized program

Instruction reordering is most effective: maximize instruction level parallelism

opt: Apply all 3 optimizations
baseline1: No optimizations
baseline2: No register allocation optimization
baseline3: No instruction reordering
baseline4: No memory ordering enforcement

Scalable and Energy-Efficient Architecture Lab (SEAL)

• Lightweight programmable arch: A decoupled control-execution architecture
• Flexible ISA support: Single-Instruction-Multiple-Bank (SIMB) ISA
• End-to-end compilation flow: Halide-iPIM

• Evaluation results:
• 11.02x speedup and 79.49% energy savings over state-of-the-art GPU accelerator
• 3.61x speedup and 56.71% energy savings over the process-on-base-die solution
• Overall compiler optimizations provide 3.19x speedup over unoptimized baseline

55

iPIM Key Takeaways:

Scalable and Energy-Efficient Architecture Lab (SEAL)

iPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

56

Thank you!
Q&A

