
iPIM: Programmable In-Memory Image Processing
Accelerator Using Near-Bank Architecture

Peng Gu∗1, Xinfeng Xie∗1, Yufei Ding2, Guoyang Chen3, Weifeng Zhang3, Dimin Niu4, Yuan Xie1,4
1Department of Electrical and Computer Engineering, UCSB, Santa Barbara, USA

2Department of Computer Science, UCSB, Santa Barbara, USA

Email:{peng_gu,xinfeng,yufeiding,yuanxie}@ucsb.edu
3Alibaba Cloud Infrastructure, Sunnyvale, USA
4Alibaba DAMO Academy, Sunnyvale, USA

Email:{g.chen,weifeng.z,dimin.niu}@alibaba-inc.com

Abstract—Image processing is becoming an increasingly impor-
tant domain for many applications on workstations and the data-
center that require accelerators for high performance and energy
efficiency. GPU, which is the state-of-the-art accelerator for image
processing, suffers from the memory bandwidth bottleneck. To
tackle this bottleneck, near-bank architecture provides a promis-
ing solution due to its enormous bank-internal bandwidth and
low-energy memory access. However, previous work lacks hard-
ware programmability, while image processing workloads contain
numerous heterogeneous pipeline stages with diverse computation
and memory access patterns. Enabling programmable near-bank
architecture with low hardware overhead remains challenging.

This work proposes iPIM, the first programmable in-memory
image processing accelerator using near-bank architecture. We
first design a decoupled control-execution architecture to provide
lightweight programmability support. Second, we propose the
SIMB (Single-Instruction-Multiple-Bank) ISA to enable flexible
control flow and data access. Third, we present an end-to-end
compilation flow based on Halide that supports a wide range
of image processing applications and maps them to our SIMB
ISA. We further develop iPIM-aware compiler optimizations,
including register allocation, instruction reordering, and memory
order enforcement to improve performance. We evaluate a set of
representative image processing applications on iPIM and demon-
strate that on average iPIM obtains 11.02× acceleration and
79.49% energy saving over an NVIDIA Tesla V100 GPU. Further
analysis shows that our compiler optimizations contribute 3.19×
speedup over the unoptimized baseline.

Keywords—Process-in-memory, Image Processing, Accelerator

I. INTRODUCTION

With the advance of imaging devices and computational

photography, image processing is becoming an increas-

ingly important domain on workstations [48] and the data-

center [72] platforms for various applications, such as machine

learning [12], biomedical engineering [22], and geographic

information systems [34]. These image processing workloads

usually involve a large amount of data-intensive computa-

tions [55], thus motivating the design of domain-specific

accelerators for both high performance and energy efficiency.

∗Peng Gu and Xinfeng Xie are co-primary authors.
This work was supported in part by NSF 1719160, 1730309, and 1925717.

As a state-of-the-art accelerator for image processing, GPU

has achieved great success [28]. However, the memory-

wall [63] impedes its further performance improvement as a

result of both the characteristics of image processing work-

loads and the limited bandwidth provided by the compute-

centric architecture. On the one hand, image processing appli-

cations require high memory bandwidth, since most of their

pipeline stages have low arithmetic intensity. Even worse, its

heterogeneous pipeline stages can hardly be fused [18], [19],

[30], [53], [59], [61] due to the introduction of redundant

computations and the degradation of parallelism. On the other

hand, the scaling of memory bandwidth provided by the

compute-centric architecture is hindered by both the limited

number of off-chip I/O pins [63] and costly data movement

energy [31]. To validate this bottleneck, we conduct a detailed

profiling of representative image processing benchmarks on an

NVIDIA Tesla V100 GPU [2] (Sec.III), which shows apparent

bandwidth-bound performance bottleneck (57.55% memory

utilization v.s. 3.43% ALU utilization).

To overcome the bottleneck of memory bandwidth, the 3D-

stacking processing-in-memory (3D-PIM) architecture pro-

vides a promising solution. This architecture embraces higher

memory bandwidth by integrating compute-logic nearer to

memory. The first kind of 3D-PIM designs, process-on-base-

die solution [5], [29], [39], places compute-logic on the

base logic die to utilize the cube-internal Through-Silicon-

Via (TSV) bandwidth, and demonstrates bandwidth advantages

over GPU. To further unleash the bank-level bandwidth of 3D-

PIM, the near-bank solution is proposed [3], [64], [73], which

closely integrates compute-logic to each bank in the DRAM

dies. It can provide around 10× peak bandwidth improve-

ment compared with the previous solution since compute-

logic directly accesses the local bank without going through

limited TSVs. Therefore, near-bank architecture emerges as a

competitive solution to solve the memory bandwidth challenge

for the current compute-centric image processing accelerators.

Although near-bank architecture has great potential for ac-

celerating image processing applications, there are still several

challenges. First, heterogeneous image processing pipelines

exhibit various computation and memory patterns, thus re-

804

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00071

quiring programmable hardware support. However, directly

attaching control cores to each DRAM bank introduces large

area overhead [23], [42], [57], so it is challenging to design a

lightweight architecture supporting diverse image processing

pipelines. Second, the design of instruction set architecture

(ISA) needs to be concise yet powerful because it needs

to avoid complex hardware support while enabling flexible

computation, data movement, and control flow operations at

the same time. Third, end-to-end compilation support for this

accelerator requires easy programming interfaces to enable the

efficient mapping of various image processing pipelines to the

near-bank architecture, as well as backend optimizations to

fully exploit the hardware potentials.
To address these challenges of using the near-bank archi-

tecture for image processing pipelines, we design the first

programmable image processing accelerator (iPIM) and an

end-to-end compilation flow based on Halide [61] to effi-

ciently map applications onto our accelerator. First, iPIM

uses a decoupled control-execution architecture to integrate

a control core under the tight area constraint. Specifically,

the control core is placed on the base logic die of the

3D-stack, while lightweight computation units and several

small buffers are attached to each memory bank in DRAM

dies. During the execution of instructions, the control core

broadcasts instructions to all associated banks using TSVs, and

all computation units conduct parallel execution in lockstep.

Second, we design Single-Instruction-Multiple-Bank (SIMB)

ISA for the proposed near-bank accelerator. The SIMB ISA

supports SIMD computation which utilizes the bank’s high

I/O width (128b), flexible data movement within the near-bank
memory hierarchy, control flow instructions that enable index

calculation, and synchronization primitives for communica-

tion. Third, we develop an end-to-end compilation flow with

new Halide schedules for iPIM. This compilation flow extends

the frontend of Halide for supporting these new schedules

and includes a backend with optimizations for iPIM including

register allocation, instruction reordering, and memory order

enforcement to reduce resource conflict, exploit instruction-

level parallelism, and optimize DRAM row-buffer locality,

respectively.
The contributions of our work are summarized as follows:

• We design a standalone programmable accelerator, iPIM,
using 3D-stacking near-bank architecture for image pro-

cessing applications. By using a decoupled control-

execution architecture, iPIM supports programmability

with small area overhead per DRAM die (∼ 10.71%).
• We propose SIMB (Single-Instruction-Multiple-Bank)

ISA which enables flexible computation, data access, and

communication patterns to support various pipeline stages

in image processing applications.

• We develop an end-to-end compilation flow based on

Halide with novel iPIM schedules and various iPIM

backend optimizations including register allocation, in-

struction reordering, and memory-order enforcement.

• Evaluation results of representative image processing
benchmarks, including single stage and heterogeneous

multi-stage pipelines, show that iPIM design together

with backend optimizations can achieve 11.02× speedup
and 79.49% energy saving on average over an NVIDIA

Tesla V100 GPU. The backend optimizations improve

3.19× performance compared with the naı̈ve baseline.
II. BACKGROUND

A. 3D-stacking Process-in-memory (3D-PIM) Architecture

We introduce the overall architecture and opportunities of

3D-PIM for image processing applications as follows. One 3D

stacking memory cube (HBM [66] and HMC [58]) consists

of multiple stacked DRAM dies on top of a base logic die.

The control logic on the base logic die will access memory

using TSVs (Through-Silicon-Vias) [71], which are vertical

interconnects shared among 3D layers. Previous work [5],

[29], [39] has explored placing compute-logic on the base logic

die to harvest cube-internal TSV bandwidth. This solution

is constrained by the maximal bandwidth provided by TSVs

(currently 307GB/s for one cube with 1024 TSVs [66]), and
scaling TSVs is very difficult due to the large area overhead

(already 18.8% of each 3D layer [66]). To tackle this TSV

bottleneck, researchers further explore near-bank architecture

for 3D-PIM [3], [64], [73]. The near-bank design integrates

simple compute-logic adjacent to each bank without changing

DRAM bank circuitry. The enormous bank-level bandwidth

and massive bank-level parallelism make it promising to accel-

erate data-intensive image processing applications. However,

the lack of programmability due to expensive control core

support is very challenging to enable heterogeneous image

processing pipelines which have diverse computation and

memory patterns. In this work, we tackle this programma-

bility challenge by proposing a lightweight decoupled control-

execution architecture (Sec.IV-B), and SIMB ISA that supports

a wide range of image processing pipelines (Sec.IV-C).

B. Image Processing and Halide Programming Language

Image processing contains heterogeneous pipelines which

are wide and deep [61], and it is bound by memory bandwidth

on the compute-centric architecture. From the applications’

point of view, first, most image processing pipeline stages

have low arithmetic intensity (operations per byte) and massive

data parallelism for individual pixels, such as elementwise and

stencil computations. Second, the whole pipelines are long

and heterogeneous (e.g., 23 different stages in local Laplacian

filter [56]), and they have complex data dependencies (e.g.,

resampling and gather in local Laplacian filter). Therefore,

from the hardware’s point of view, these features make it very

difficult to apply pipeline fusion techniques [18], [19], [30],

[53], [59], [61] to boost the performance. Thus, on compute-

centric accelerators like GPU, image processing performance

is bound by memory-bandwidth (Sec.III), and near-bank ar-

chitecture provides a promising solution.

Although widely-adopted programming languages for im-

age processing like Halide [61] provide optimizations for a

wide range of compute-centric accelerators like GPU [52] and

FPGA [21], there are no existing solutions for memory-centric

805

Fig. 1. GPU profiling results for image processing workloads (Table.II).

accelerators. Halide decouples the algorithm descriptions and

the algorithm to hardware mapping, thus programmers can

separately describe an algorithm and a schedule. Based on

the provided algorithms and schedules, the Halide compiler

will synthesize hardware-specific programs. In this work, we

propose the first end-to-end compilation framework for image

processing applications in Halide on the near-bank architecture

by designing novel schedules (Sec.V-B) and developing a

compiler backend to improve the performance (Sec.V-C).

III. MOTIVATION

First, we find that memory-bandwidth is the performance

bottleneck for GPU, which is the current state-of-the-art image

processing accelerator [28]. We conduct a detailed profiling

of representative benchmarks (Table.II) using Halide frame-

work [61] and DIV8K [65] dataset on an NVIDIA Tesla V100

GPU [36]. The measured total DRAM bandwidth, DRAM

utilization, and ALU (both FP32 and INT32) utilization are

shown in Fig.1(a). We observe that these benchmarks ex-

hibit DRAM bandwidth-bound behavior by achieving 57.55%
DRAM utilization (518GB/s bandwidth) and 3.43% ALU

utilization on average. We also note that the memory and

ALU utilization are both low for Histogram benchmark, which

results from that Histogram involves value-dependent compu-

tations and the Halide schedule for GPU cannot achieve ideal

performance.

Second, we observe that multi-stage benchmarks (the last 4
in Fig.1), which are optimized by Halide pipeline fusion, show

little performance improvement compared with single-stage

benchmarks (the first 6 in Fig.1). The ALU utilization only

increases from 2.85% to 4.53%. Also, the DRAM utilization

is merely reduced from 58.80% to 55.73%, which is still
significantly higher than the ALU utilization. We conclude

that Halide compiler optimizations cannot change the memory-

bound behavior of image processing applications on GPU,

motivating an accelerator providing more memory bandwidth.

Third, we find that index calculation, which is an important

part of programmability support for flexible memory access

patterns, consumes a large portion of total ALU utilization

for image processing workloads. For the current profiling,

index calculation uses INT32 data type and algorithm-related

computation uses FP32 data type. The breakdown of the ALU

utilization is shown in Fig.1(b). We observe that on average

index calculation takes 58.71% of total ALU utilization, and

index calculation dominates the total ALU utilization (> 60%)
for 5 out of 10 benchmarks. The index calculation ratio is high
because image processing requires frequent translations from

2D image to 1D memory space [20]. This motivates us to

enable architecture support for index calculation in iPIM.

IV. ARCHITECTURE DESIGN

First, we introduce the microarchitecture overview in

Sec.IV-A. Second, we describe iPIM’s decoupled control-

execution scheme in Sec. IV-B. Then, we explain the instruc-

tion set architecture design in Sec. IV-C. Next, we discuss the

remote memory access mechanism and present the method

for inter-vault synchronization in Sec.IV-D. In the end, we

detail the functionalities of iPIM’s hardware components in

Sec.IV-E.

A. Microarchitecture Overview
In general, iPIM uses the 3D-stacking near-bank archi-

tecture with a top-down hierarchy of cube, vault, process
group, and process engine as illustrated in Fig.2(a). First,
iPIM consists of multiple cubes (Fig.2(a1)) interconnected by

SERDES links similar to HMC [58]. Second, one cube is

horizontally partitioned into multiple vaults (usually 16 per

cube) connected by an on-chip network. Each vault (Fig.2(a2))

spans multiple 3D-stacking layers, including several process-

in-memory (PIM) dies (usually 4 to 8 per vault) and one

base logic die. The inter-layer communication is realized by

Through-Silicon-Vias (TSVs, usually 64 per vault), which are

high-bandwidth vertical interconnects that link each layer to

the base logic die. The base logic die of each vault contains

one iPIM control core (Fig.2(b)), which is the basic unit to

execute an iPIM program. Next, one PIM die of each vault

contains one process group (PG) (Fig.2(a3)), which further

consists of many process engines and a shared process group

scratchpad memory (PGSM). Last but not least, each process

engine (PE) (Fig.2(c)) employs near-bank architecture, where

compute-logic and lightweight buffers are integrated with a

DRAM bank. Especially, each PE adds an address register file

and an integer ALU to efficiently support index calculations

which are important for image processing (Fig.1(b)).
Based on this microarchitecture, iPIM decouples the control,

which happens on the base logic die, from the massive bank-
level parallel execution, which happens on the PIM dies
(Sec.IV-B). In addition, we design SIMB ISA to support

various computation and memory access patterns in image pro-

cessing, and efficiently move data among the iPIM hierarchy

(PE-level, PG-level, vault-level, or cube-level) (Sec.IV-C).

B. Decoupled Control-Execution Architecture
iPIM uses a novel decoupled control-execution design to

reduce the overhead of the control core by placing it on the

806

Fig. 2. iPIM control-execution decoupled 3D-stacking microarchitecture: (a1) 3D-stacking cubes. (a2) A vault. (a3) A Process Group (PG). (b) Components
inside an iPIM control core on the base logic die. (c) Components inside a Process Engine (PE) on the PIM dies.

TABLE I
IPIM’S SINGLE-INSTRUCTION-MULTIPLE-BANK (SIMB) INSTRUCTION SET ARCHITECTURE

Category Instruction Description Operands

computation comp
SIMD computation (mode:vector-vector,scalar-vector)
+FP/INT arithmetic (add,subtract,multiply,mac)
+logical arithmetic (shift,and,or,xor,crop-lsb,crop-msb)

comp,op,mode,dst drf,
src1 drf,src2 drf,vec mask,simb mask

index calculation calc arf memory address calculation (INT only) calc arf,op,dst arf,src1 arf,src2 arf,simb mask

intra-vault
data movement

st/ld rf store(/load) data to(/from) the bank from(/to) the DataRF st/ld rf,dram addr,drf addr,simb mask
st/ld pgsm store(/load) data to(/from) the bank from(/to) the PGSM st/ld pgsm,dram addr,pgsm addr,simb mask
rd/wr pgsm read(/write) data from(/to) the PGSM to(/from) the DataRF rd/wr pgsm,pgsm addr,drf addr,simb mask
rd/wr vsm read(/write) data from(/to) the VSM to(/from) the DataRF rd/wr vsm,vsm addr,drf addr,simb mask
mov drf/arf move data from(/to) DataRF to(/from) AddrRF mov drf/arf,arf addr,drf addr,simb mask
seti vsm set immediate value to a VSM location seti vsm,vsm addr,imm
reset reset a DataRF entry to zero reset,drf addr,simb mask

inter-vault
data movement

req request data from a remote vault to the local vault
req,dst chip id,dst vault id,dst pg id,dst pe id,
dst dram addr,src vsm addr

control flow
jump/cjump jump/conditional jump jump/cjump,(cond),crf addr
calc crf control flow data calculation (INT only) calc crf,op,dst crf,src1 crf,src2 crf
seti crf set immediate value to a CtrlRF location seti crf,crf addr,imm

synchronization sync inter-vault synchronization sync,phase id

base logic die, and allows the parallel execution of processing
engines on the PIM dies to benefit from the abundant bank-

level bandwidth. For the control core, the design principle is to

keep the hardware simple and rely on compiler optimizations

(Sec.V) to realize high performance. Therefore, iPIM uses

a pipelined, single-issue, and in-order core, where the data

hazard is eliminated when an instruction is issued, so the hard-

ware needs no complex forwarding logic. For the execution

part, the SIMB ISA (Sec.IV-C) can exploit massive bank-level

parallelism by programming the bits of simb mask.
Next, we introduce the detailed pipeline execution of iPIM

in Fig.2(b) (with related instructions in Table.I) as follows.

1 Depending on the program counter (pc), an instruction
will be fetched from the instruction cache (I$) and decoded.
pc can be updated from control register file (CtrlRF) using

jump/cjump, and calc crf, seti crf are used to calculate
control flow values. 2 The decoded instruction will be

checked against instructions in the Issued Inst Queue. If

true/anti/output data dependency is found, the instruction will

stall with a pipeline bubble inserted. Once the instruction is

issued, it is added to the Issued Inst Queue until retirement.

3 The issued instruction is broadcast by SIMB controller to

each PE according to the simb mask, or sent to a vault-level

unit for execution (e.g. seti vsm). If the instruction involves
remote vault access, it is dispatched to the network interface

controller (NIC). 4 (a) For the vault-local SIMB execution,

each PE will check the corresponding bit in simb mask and
proceed execution or stay idle. (b) For the remote vault access,

the request will be translated into packets and traverse the

on-chip network or off-chip links. 5 The SIMB instruction

executes in lock-step, and an instruction retires only if all bits

in the simb mask are cleared. Each time a PE finishes an
instruction, the SIMB controller will clear its execution bit.

After an instruction finishes, it is committed by popping the

corresponding entry from the Issued Inst Queue. This also

clears data dependency for later instructions.

As a conclusion, this architecture not only enables

lightweight programmability to control heterogeneous pipeline

stages (base logic die) but also supports parallel execution to
provide abundant memory bandwidth for data-intensive image

processing operations (PIM dies).

C. Single-Instruction-Multiple-Bank (SIMB) ISA

To exploit the data-parallelism in image processing, we

propose a Single-Instruction-Multiple-Bank (SIMB) ISA to

expose bank-level parallelism as detailed in Table.I. From a

807

high-level overview, this ISA resembles a RISC-like SIMD

ISA that enables bank-parallel computation as well as efficient

memory access as detailed below.

For the computation, we highlight the support for SIMB

and SIMD execution. To enable SIMB, each SIMB-capable

instruction has a simb mask field, which is a boolean vector
indicating whether the corresponding PE should execute this

instruction or not. For example, in a vault with 8 PGs where
each PG has 4 PEs, the simb mask should be a 32b boolean
vector. To enable SIMD, each computation and data movement

instruction operates on a vector of FP32/INT32 elements. The

vector length is chosen to be 4 to match the local bank’s
interface (128b per access) and TSV’s data transfer width
(128b per cycle), so the internal bandwidth is fully utilized.
For each vault, control signals and data signals share the same

physical TSVs through time multiplexing, which is realized by

the arbiter in Fig.2. Therefore, there is no additional TSV area

cost for control signals to each PE.

For memory access, we emphasize the support for data

movement and memory indexing. To enable data movement,

SIMB ISA contains different instructions to realize customized

data flow along the memory hierarchy. To support flexible

indexing, SIMB ISA contains index calculation instructions

and allows communication between the address register file

and the data register file to enable data-dependent computation.

More detailed explanations about SIMB ISA are as follows:

The computation instruction (comp) supports vector-

vector(/-scalar) operations specified by the mode field. The
vec mask indicates which positions in the vector are valid for
computation. The op defines the operation to be performed.

The index calculation instruction (calc arf) supports paral-
lel address calculations among PEs, so each PE can have inde-

pendent memory access patterns. To allow different PEs inside

a vault to operate on different addresses in the SIMB fashion,

indirect addressing is supported for the bank (dram addr),
PGSM (pgsm addr), and VSM (vsm addr) addresses. When
indirect address mode is used, the corresponding address field

will first index into the address register file in each PE, and

then the fetched address will be used to index the target

memory component. This can satisfy the need for flexible 2D

memory access patterns in image processing.

The data movement instructions (intra-vault/inter-vault) are
classified into two types. The first type involves DRAM

bank access (st/ld rf, st/ld pgsm for local vault access, and

req for remote vault access). The second type includes data
movement along the memory hierarchy within a vault.

The control flow instructions support control flow

(jump/cjump) and related calculations (calc crf, seti crf).
These enable iPIM programs to have dynamic behaviors to

support various computation patterns in image processing.

The synchronization instruction (sync) allows different
vaults to synchronize computation stages according to a

phase id. Sec.IV-D contains a detailed example.

D. Remote Access and Synchronization

iPIM supports data access from a remote vault by imple-

menting an asynchronous request instruction (req). First, the
local vault needs to provide the remote vault’s memory address

and issues a req to local vault’s NIC. Then, the remote vault
adds this request to the DRAM request queue of the corre-

sponding PE. Next, the accessed data is temporarily buffered

in the remote vault’s VSM and sent back to the local vault

after inter-vault link traversal. The communication interface

guarantees delivery, so no acknowledgment is required.

iPIM realizes synchronization among different vaults

through a lock-step synchronization instruction (sync), which
acts as a barrier to block all instructions after this sync. The
synchronization relies on a centralized master-slave protocol,

where a selected vault is designated as the master vault

and all other slave vaults are coordinated. For a vault, a

synchronization point is reached only if all instructions before

that sync finish execution. Then, the slave vault will signal
the master vault, after which the master vault will update a

global synchronization status vector. After the global synchro-

nization point is reached, the master vault will broadcast a

proceed phase message to all slave vaults, and all vaults will
commit the sync instruction and proceed execution phases.

E. Hardware Components and Usages

This section introduces important information regarding the

hardware components in iPIM as follows:

Data/Address Register File (DataRF/AddrRF): Both the

DataRF and AddrRF employ multi-port architecture to avoid

resource hazards during execution. The DataRF has a vector

interface (128b) that aligns with the bank’s width. To accom-
modate the scalar interface (32b) of AddrRF, a multiplexer is
added. In addition, AddrRF locations A0-A3 are reserved to
store PE’s peID, pgID, vaultID, and chipID, respectively.
Process Group Scratchpad Memory (PGSM): PGSM is used
for data sharing among PEs in a PG. To access another PE’s

memory, a simple way is to generate a ld pgsm from the

source PE followed by a rd pgsm to the destination PE with

the same PGSM address. To enable parallel PE access, PGSM

allocates individual ports for each PE and employs multi-bank

architecture. (Fig.2(a3)). Each PE has a separate read port and

a write port into PGSM so that data loading to PGSM can be

overlapped with PGSM access. Also, PGSM has a 2D memory

abstraction for image processing applications.

Vault Scratchpad Memory (VSM): VSM has three function-

alities. First, VSM is used for data sharing among PEs in a

vault. To access another PG’s memory, a possible solution is to

generate a ld rf and a wr vsm to write the data to a VSM

location, and use a rd vsm to bring the data to local PE.

Note that TSVs are shared among PGs, so VSM has only one

data port for TSVs. Second, VSM temporarily buffers the data

for remote vault access. Third, VSM acts as the instruction

memory that accepts computation offloading from a host.

In-DRAM Memory Controller: iPIM integrates a lightweight
memory controller that serves the banks inside each PG

(Fig.2(c)). The memory controller contains a memory request

808

// Algorithm
Func blurx (x , y) = (in (x − 1 , y) + in (x , y)

+ in (x + 1 , y)) / 3 . 0f ;
Func out (x , y) = (blurx (x , y − 1) + blurx (x , y)

+ blurx (x , y + 1)) / 3 . 0f ;

// Schedule for iPIM
out .compute_root ()

.ipim_tile (x , y , xi , yi , 8 , 8)

.load_pgsm (xi , yi)

.vectorize (xi , 4) ;

Listing 1. Code example of image blur.

queue, a DRAM command buffer, DRAM command trans-

lation and issuing logic, a counter to record last DRAM

command issuing cycle, a DRAM status register, and an

open row address register. Currently the memory controller

supports two page policies (open/close page) and two DRAM

scheduling policies (FCFS,FR-FCFS) [62]. It also schedules

DRAM refresh commands according to tREFI and tRFC

timing parameters similar to AxRAM [73].

On/off-chip Network: iPIM adopts a 2D mesh topology for

both the on-chip and off-chip network. Each router assumes

Input-Queued (IQ) microarchitecture and implements the X−
Y routing algorithm. Also, simple flow control and channel

allocation policies [37] are used.

V. COMPILER

This section details the design of an end-to-end compilation

flow based on Halide for iPIM hardware. First, we introduce

the programming interface of iPIM in Sec.V-A, which includes

the design of new schedules for iPIM. Second, we explain the

compilation flow in Sec.V-B including the extension of Halide

front-end compilation passes and our customized backend for

iPIM. Finally, we detail the backend optimizations in Sec.V-C

for generating efficient iPIM executable programs.

A. Programming Interface

To support various image processing applications composed

of heterogeneous pipelines on iPIM, we use Halide as the

programming language because of its success in this appli-

cation domain. Our front-end support for Halide eases the

burden of programmers from two perspectives. First, the image

processing algorithm written in Halide does not have to be

changed for iPIM because Halide decouples the algorithm

from its schedules. Second, we develop customized schedules

to provide an easy-to-use high-level abstraction for indicating

workload partition and data sharing among PEs in iPIM.

Thus the workload partition and data sharing are optimized

automatically by our end-to-end compilation flow according to

these high-level schedules without programmers’ involvement.

We develop customized schedule primitives to efficiently

exploit hardware characteristics on iPIM hardware. In par-

ticular, we extend Halide with two new schedule primitives,

ipim tile() and load pgsm(), for distributing data into dif-
ferent banks and utilizing the scratchpad of a processing-

group. The first customized schedule for iPIM, ipim tile(),

Fig. 3. An iPIM compilation example of image blur: (a) Spatial mapping.
(b) PG-level scheduling. (c) PE-level scheduling.

specifies the dimensions of image data to be partitioned and

distributed across the hierarchy of iPIM. For example, the

schedule ipim tile(x, y, xi, yi, 8, 8) in Listing.1 indicates that
the image will be partitioned into image tiles (8x8 size). In

addition to the partition of the image into tiles, this schedule

also indicates the distribution of these image tiles across all

PEs. Fig.3(a) shows the distribution of these image tiles into

different levels in the hierarchy of iPIM. Specifically, image

tiles are distributed in an interleaved way to the PEs of the

same PG so that they can load adjacent image tiles at the same

loop iteration to improve data sharing. The second customized

schedule for iPIM, load pgsm(), indicates the usage of shared
scratchpad memory at the PG level. For example, the schedule

load pgsm(xi, yi) in Listing.1 indicates that the data of input
image needed for computing output along loops xi and yi will
be loaded into shared scratchpad memory before using it for

the computation. Fig.3(b) shows the usage of PGSM according

to the specification of load pgsm() in Listing.1 at PG-level.
After loading data into PGSM, Fig. 3(c) shows the temporal

scheduling of the computation for each PE including four steps

(2) to load the whole region of input data (1) for a vector

of output pixels. By supporting this schedule, data sharing

across adjacent image tiles can happen at the PG level.

In addition to our customized schedules for data partition

and sharing on iPIM, we leverage existing Halide schedules

to specify the fusion of pipelines and the vectorization of

computation on iPIM. In Listing.1, compute root() ensures
that the loops along dimensions of the Func out will be
outermost loops and the stages of computing blurx will be
fused into the computation of out. During code generation,
each compute root() implies a kernel function reading input
data from and writing output results to DRAM banks. Besides

compute root(), we also exploit the vectorization schedule
(vectorize(xi, 4)) supported by Halide for iPIM because our

809

Fig. 4. The end-to-end compilation flow of iPIM.

ISA includes SIMD instructions. Specifically, we exploit the

compilation pass of vectorization in Halide frontend aligning

data to improve the utilization of SIMD units in iPIM.

B. Compilation Flow

As shown in Fig.4, we develop an end-to-end compilation

flow to support an automatic transformation from a Halide

algorithm with customized iPIM schedules to a hardware

executable program on iPIM. We develop the frontend code

transformation to support our iPIM schedules and the back-

end instruction optimizations to improve the performance of

generated programs. Our backend optimizations have unique

challenges due to our novel near-bank architecture from two

perspectives. First, because of the simple in-order control core

design, our register allocation phase needs to prevent data

hazards due to register contention. Thus, this phase aims

to span virtual registers into different physical registers to

avoid such data hazards instead of minimizing the number

of allocated registers in the typical register allocation phase.

Second, our instruction reorder phase needs to optimize row

buffer locality when exploiting the instruction-level paral-

lelism (ILP) because of the timing characteristics of DRAM

banks. Thus we add new virtual dependencies to enhance

the row-buffer locality which is critical to the performance

of programs. In summary, our end-to-end compilation flow

takes advantage of customized schedules to generate programs

exploiting iPIM hardware features, such as PGSM, and our

backend optimizations further improve the performance of the

programs.

C. Backend Optimization

In this section, we detail the novel instruction optimizations

we developed for the backend. The major goal of the backend

in our compilation flow is to generate efficient iPIM executable

programs from the input Halide module. The backend decou-

ples this program generation process into two parts, instruc-

tion lowering which translates the Halide module into iPIM

instructions, and instruction optimizations which improve the

performance of the generated programs. We will detail these

optimizations into three parts, register allocation, instruction
reordering, and memory order enforcement. The effectiveness
of our backend optimizations will be quantitatively analyzed

in Sec.VII-E.

Register Allocation: The goal of register allocation is to
assign a physical register to each virtual register and avoid the

instruction dependency due to the conflict of physical registers.

To avoid such conflicts on physical registers, our algorithm

is based on the depth-first search on the register interference

Algorithm 1: Instruction reordering algorithm
Input: dependency graph of instructions G = (V,E)
Output: a sequence of instructions S
Init the set of ready instructions R = ∅
for v ∈ V do
Init T (v) = 0
if v.degree == 0 then
R = R

⋃{v}
N(v): the outgoing neighbour nodes of the node v.
L(v): the execution latency of the node v.
for i = 1 to |V | do
vopt = Inst with the highest priority for v ∈ R.
R = R− {vopt}; Si = vopt; T (vopt) = i
for u ∈ N(vopt) do
T (u) = max{T (u), T (vopt) + L(vopt)}
u.degree = u.degree− 1
if u.degree == 0 then
R = R

⋃{u}

graph, and it attempts to assign each virtual register from a

physical register different from the most recently used one.

The input of our algorithm, the register interference graph, is

built upon the traditional liveness analysis of virtual registers.

After building the register interference graph and converting

the register allocation problem into a graph coloring problem,

our algorithm tries to avoid the conflict of physical registers

rather than solely minimizing the number of physical registers

in the allocation. Because the architecture design of iPIM uses

simple in-order control core to avoid hardware overheads, the

traditional register allocation method could cause the depen-

dency between instructions due to the conflict of physical

registers, which further leads to pipeline stalls.
Instruction Reordering: Although the program generated

by register allocation is already executable on iPIM, we

reorder instructions in the program to maximally exploit the

instruction-level parallelism. Because of the instruction issue

mechanism of our in-order core, the dependency between

adjacent instructions will lead to pipeline stalls. Therefore,

the instruction reordering aims to expose instruction-level

parallelism to the hardware, which eliminates pipeline stalls

and improves the performance. We first build a directed graph

where each node stands for instruction and directed edges

between nodes represent the dependency between instructions.

Then we develop our instruction reordering algorithm which

traverses this directed graph in topological order. We associate

each node with a timestamp to provide an estimation of

its earliest time ready to be issued (T (v) in Algorithm.1).
When there are multiple instructions available at a time step,

we will schedule the load instruction with the T smaller

than the current time step or the node with the smallest T .
After marking the instruction to be scheduled, we update the

incoming degree of all its outgoing neighbors, and also their

timestamp T . Finally, all instructions are scheduled into the
output sequence after iterating through |V | time steps. This
graph traversal algorithm is demonstrated in Algorithm 1, and

its time complexity is O(|V |log|V | + |E|) where |V | is the
number of nodes, i.e. instructions, and |E| is the number of
edges in the directed dependency graph.

Memory order enforcement: In addition to data depen-

810

Fig. 5. Instruction reordering example: image brighten.

dency which will block issuing instructions, we also add the

dependency for resource conflicts to prevent pipeline stalls due

to resource contention on DRAM. In particular, issuing two

DRAM load instructions consecutively consumes slots in the

instruction queue at the base logic die while the second instruc-

tion has to be stalled because of the single memory request

queue and a longer DRAM access latency. In some cases, a

large number of consecutive DRAM instructions could occupy

the whole instruction queue impeding the scheduling of further

computation instructions which do not have a dependency on

any instruction in the queue. To prevent pipeline stalls due to

the lower throughput of the memory request queue, we insert

dependency between load instructions and store instructions

to defer the scheduling of consecutive memory instructions.

We use the image brighten pipeline as an example shown in

Fig.5. Since DRAM access latency varies from the case of

row buffer hit to row buffer miss, we also add the third kind

of dependency to enforce the memory accesses to the DRAM

with the same order as they appear in the input program. As

shown in Fig.5, these two kinds of newly added dependency

edges help to avoid pipeline stalls due to DRAM request queue

contention and improves the locality of row buffers as it keeps

the originally good data access locality on image tiles. After

adding these two new kinds of dependency among instructions,

the generated instruction dependency graph is passed to the

instruction reordering stage.

VI. SYSTEM INTEGRATION

We consider iPIM as a standalone accelerator with a sep-

arate address space, which is not a part of the host CPU’s

system memory. This standalone design can avoid the com-

plexity and overhead of supporting virtual memory [9] and

cache coherence [11], which introduces extra communication

traffic between the host and PIM accelerator and offsets the

benefits of PIM. iPIM can be integrated with the host CPU

using a standard bus, such as PCIe [50] and AMBA [14],

and can be scaled using off-chip SERDES links similar to

HMC [58].

VII. EVALUATION

We first describe the experimental setup and methodolo-

gies in Sec.VII-A. Next, we show the performance, energy,

and area results of iPIM in Sec.VII-B. In Sec.VII-C, we

demonstrate the advantages of iPIM’s near-bank design and

the effectiveness of decoupled control-execution architecture.

TABLE II
IMAGE PROCESSING BENCHMARK SETTING.

Category Benchmark Description

Single-stage
Benchmarks

Image
Brighten out(x,y)=α· in(x,y)
Gaussian
Blur

blur x(x,y)=(in(x,y)+in(x+1,y)+in(x+2,y))/3
blur y(x,y)=(blur x(x,y)+blur x(x,y+1)+blur x(x,y+2))/3

Downsample d(x,y)=(in(2x-1,y)+in(2x, y)·2+in(2x+1,y))/4
out(x,y)=(d(x,2y-1)+d(x,2y)·2+d(x,2y+1))/4

Upsample u(x,y)=(in(x/2,y)+in((x+1)/2,y))/2
out(x,y)=(u(x,y/2)+u(x,(y+1)/2))/2

Shift out(x,y)=in(x-4,y-4)

Histogram RDom r(0,in.width(),0,in.height())
histogram(in(r.x,r.y))+=1

Multi-stage
Benchmarks

Bilateral
Grid

It uses the bilateral grid filter to smooth
images with edges preserved (4 pipeline stages) [15]

Interpolate It interpolates pixel values using a pyramid of
low-resolution samples (12 pipeline stages) [61]

Local
Laplacian

It tone-maps an image and enhances its local contrast
using a multi-scale method (23 pipeline stages) [56]

Stencil
Chain

It is composed of a chain of
stencil computations (32 pipeline stages) [61]

In Sec.VII-D, we study the instruction breakdown of each

benchmark. In Sec.VII-E, we show the benefits of iPIM’s

compiler optimizations by conducting a series of comparative

evaluations. In the end, we conclude that iPIM’s compiler

optimizations are near-optimal by showing the achieved high

hardware utilization and instruction per cycle (IPC) number.

A. Experimental Setup

Benchmark and Dataset Selection. As detailed in Table.II,
we use a set of single-stage and multi-stage benchmarks

for an in-depth and comprehensive analysis. The single-stage

benchmarks cover a wide range of computation and memory

patterns in important image processing operations [13], such

as elementwise, stencil, reduction, gather, shift, and other

data-dependent operations. With them, we are able to provide

isolated in-depth analysis for each image processing operation.

The multi-stage benchmarks, which are widely used in image

processing programming languages [19], [30], [41], [61], on

the other hand, contain heterogeneous pipeline stages that

require the support of programmability. We use DIV8K [65]

dataset, which contains over 1500 images covering diverse

scene contents with 8K (7680 × 4320) resolution for all the
evaluated benchmarks. The choice of a high-resolution dataset

is to reflect the application trend on workstations and data-

center that deep learning training, medical image processing,

and geographical information system require higher image

quality.

Hardware Configuration. iPIM assumes 3D-stacking

memory configuration similar to previous near-bank acceler-

ators [3], [64], [73] without changing DRAM’s core timing.

We list the detailed hardware configuration, latency values,

energy consumption, and DRAM settings in Table.III. We

also consider important timing parameters to limit power

(tRRDS=4, tRRDL=6, tFAW=16). iPIM contains 8 iPIM cubes
(total ∼ 850mm2) to compare with a Tesla V100 GPU card [2]

with 4 HBM stacks (total ∼ 1199mm2), where one HBM

stack consumes ∼ 96mm2 footprint [66].

Simulation Methodology. We develop a cycle-accurate
simulator extended from ramulator [40] by integrating cus-

811

TABLE III
IPIM HARDWARE CONFIGURATION PARAMETERS.

Parameter Names Configuration

Cubes/Vaults/PGs/PEs/InstQueue/DRAMReqQueue 8/16/8/4/64/16
SIMD len / CAS width / link width (SERDES) 4/128b/4
Bank / AddrRF / DataRF / PGSM / VSM (Byte) 16M/256/1K/8K/256K

tCK / tRCD / tCCD / tRTP / tRP / tRAS (ns) 1/14/2/4/14/33
tADDRRF / tDATARF / tPGSM / tVSM (ns) 1/1/1/1
tADD(SUB) / tMUL / tMAC / tLOGIC (ns) 4/5/8/1
tPEbus / tTSV / tNoC (hop) / tSERDES (hop) (ns) 1/1/1/0.08

RD,WR / PRE,ACT / AddrRF / DataRF (J/access) 0.52n/0.22n/0.43p/2.66p
SIMD Unit / Int ALU (J/access) 87.37p/11.05p
PEbus / TSV / SERDES (J/bit) 0.017p/4.64p/4.50p

DRAM rowbuffer policy / DRAM schedule open page / FR-FCFS

Fig. 6. Throughput and speedup comparison between iPIM and GPU.

tomized compute-logic and buffers with DRAM banks. iPIM

is designed to run at a clock frequency of 1GHz under the

22nm technology node. We use cacti-3DD [16] to evaluate

the inter-PE interconnects, TSV, and the 3D DRAM bank

access latency and energy. The energy, performance, and

area of the address/data register file and process group/vault

scratchpad memory are also simulated by cacti-3DD. The

base die and the SERDES energy are set based on previous

near data processing work [60]. The hardware components

of SIMD units and integer ALUs are synthesized by design

compiler [24] to derive performance, power, and area results.

For all the evaluated components on the DRAM die, we

conservatively assume ×2 area overhead considering reduced
metal layers in the DRAM process [73]. For the control core

on the base logic die, we adopt an in-order ARM cortex-A5

core [1] to evaluate its area and power. For the GPU evaluation,

the baseline image processing workloads are written in Halide

with manually-tuned schedules. The GPU performance and

power are measured from nvprof and nvidia-smi, respectively.

B. Performance, Energy-efficiency, Area, and Thermal Issues

Performance. iPIM achieves 11.02× average speedup over
the GPU as shown in Fig.6. From the hardware’s point of view,

this speedup is mainly attributed to iPIM’s ample memory

bandwidth as a result of near-bank architecture (more compar-

isons in Sec.VII-C). From the software’s point of view, this

high speedup is achieved through good compiler optimizations

(more analysis in Sec.VII-E).

Next, we explain the variations in the speedup for different

benchmarks. First, the Brighten benchmark consists of ele-

mentwise operations which are completely bound by memory

TABLE IV
AREA EVALUATION OF IPIM COMPONENTS ON THE DRAM DIE

CONSIDERING DRAM PROCESS OVERHEAD.

Name Number Area (mm2) Overhead (%)

SIMD Unit 64 2.26 2.36
Int ALU 64 0.32 0.33
Address Register File 64 0.20 0.21
Data Register File 64 1.79 1.86
Memory Controller 16 1.84 1.92
PGSM 16 3.87 4.03

Total - 10.28 10.71

bandwidth, so iPIM’s enormous bank-level bandwidth can

provide very good speedup (21.09×). Second, the Histogram
benchmark involves data-dependent computation resulting in

inferior performance using Halide’s default schedule on GPU.

The schedule on iPIM converts it into a reduction of parallel

reduced partial histogram results, thus it achieves significant

performance improvement (43.78×). Third, Blur and Stencil
Chain benchmarks only have moderate speedup (4.32× and

4.30×, respectively) on iPIM. Later analysis (Sec.VII-D and
Sec.VII-E2) shows that these two benchmarks have higher

computation intensity than other benchmarks, and involve a lot

of index calculations which are bound by address register file.

As a conclusion, the results indicate that iPIM can effectively

accelerate a wide range of image processing applications.

Energy-efficiency. iPIM achieves 79.49% average energy

saving over the GPU (Fig.7). The energy saving mainly comes

from the reduction of expensive data movement compared

with GPU, since iPIM’s compute-logic can use the local bank

without off-chip data access. Sec.VII-C2 provides a more

detailed energy breakdown to show the small overhead of data

movement in iPIM. Also, we observe that for each benchmark

the energy saving in Fig.7 is approximately proportional to the

speedup in Fig.6. This is because iPIM’s increased bank-level

bandwidth is a result of near-bank data access, which also

contributes to the reduction of data movement energy.

Next, we explain the difference in energy saving between

single-stage benchmarks and multi-stage benchmarks (89.26%
and 66.81%, respectively). iPIM employs compute root
schedule, where intermediate data between pipelines are writ-

ten back to banks without fusing. In comparison, since Halide

employs pipeline fusion for multi-stage benchmarks on GPU,

the expensive off-chip memory access can be reduced due to

increased on-chip data reuse. As a result, iPIM has a slight

drop in energy saving for multi-stage benchmarks.

Area. iPIM’s decoupled control-execution architecture is
area-efficient because it only adds small area overhead (ex-

ecution part) per DRAM die and the control core can be

well fitted on the base logic die. First, we evaluate the

area of execution components in the PIM layers considering

DRAM process overhead (Fig.2(c)), and normalize the total

added area to a DRAM die (96mm2 [66]). We show that

the added area per DRAM die is small (10.71%) to support
programmability according to Table.IV. Second, we evaluate

the area of iPIM’s control core on the base logic die (Fig.2(b)).

The core consumes 0.92mm2 total silicon footprint (including

812

Fig. 7. Energy comparison between iPIM and GPU.

Fig. 8. Comparison of near-bank and process-on-base-die solutions.

the VSM which takes 0.23mm2), and it can be well fitted into

the extra area of each vault (3.5mm2 [29]) on the base logic

die. On the contrary, if this control core is naı̈vely integrated

with each bank, the total area overhead per DRAM die will

increase to 122.36%, which is 10.42× larger than that of our
decoupled control-execution design.

Thermal Issues. iPIM’s peak power is 63W per cube

considering both DRAM dies and the base logic die, and the

peak power density is 593mW/mm2. The normal operating

temperature for 8Hi HBM2 DRAM dies is 105◦C [66],

and we conservatively assume the DRAM dies in our case

operates under 85◦C. A prior study on 3D PIM thermal

analysis [75] shows that active cooling solutions can effec-

tively satisfy this thermal constraint (85◦C). Both commodity-
server active cooling solution [51] (peak power density al-

lowed: 706mW/mm2) and high-end-server active cooling

solution [25] (peak power density allowed: 1214mW/mm2))

can be used. Also, compared with previous work [75] where

PIM logics are concentrated on the base logic die far from the

top heat sink, iPIM distributes the PIM logics evenly to each

DRAM dies, so the heat dissipation will be much better [4]. In

addition, we note that the majority of the peak power (78.5%)
is induced by simultaneously activating/precharging DRAM

banks. Since iPIM compiler optimizes row buffer locality for

image processing workloads, for memory-intensive workloads

with ideal row buffer locality, the frequency of this activity is

relatively low.

C. Architecture Analysis
1) Comparison of iPIM and process-on-base-die solution:

We compare iPIM with the process-on-base-die (PonB) solu-

tion and observe that iPIM on average achieves 3.61× speedup

Fig. 9. Energy breakdown of iPIM programs.

and 56.71% energy saving as shown in Fig.8. We further

explain the PonB configuration and the advantages of iPIM

over the PonB solution. The only difference of PonB with

iPIM is that all near-bank components are moved to the base

logic die, and these components access their DRAM banks

through TSVs. We evaluate PonB using the same benchmarks

and simulator while serializing the data traffic on the shared

TSVs between the base logic die and the DRAM dies. The

inferior performance of the PonB solution is because all mem-

ory accesses need to go through TSVs with limited bandwidth,

which is only 10% of iPIM’s peak memory bandwidth. The

energy overhead of the PonB solution is induced by expensive

in-cube data movement energy, which is 2.48× of iPIM’s local
bank access energy. We argue that it is impractical for the

PonB solution to have the same memory bandwidth as iPIM

by increasing the number of TSVs, since this will increase

the TSV overhead by 10×, which translated to 187% area

overhead per DRAM die.

2) Energy Breakdown: We provide a detailed energy break-
down of iPIM programs shown in Fig.9. The DRAM in this

figure contains the background energy, activation/precharge

(RAS) energy, read/write (CAS) energy, and refresh energy.

The SIMDunit contains all floating/integer operation energy
of the SIMD unit. The AddrRF /DataRF /PGSM contains

the read/write energy and leakage energy. The Others con-
tains data movement energy and control core’s energy on the

base logic die. The breakdown shows that iPIM’s decoupled

execution-control architecture spends most of the energy on

PIM dies (89.17%), and only a small part on data movements
and the control core (10.83%). This can be further justified by
the instruction breakdown analysis in Sec.VII-D. The low en-

ergy consumption of inter-vault and intra-vault data movement

is contributed from (1) iPIM’s near-bank architecture and (2)

localized data movement benefited from the memory hierarchy

and compiler optimizations.

3) Sensitivity Analysis: We conduct sensitivity studies on
how the number of registers per PE (RF) and Process Group

Scratchpad size (PGSM) will impact the execution time. First,

to study the RF sensitivity (Fig.10(a)), we vary the RF value

from 16 to 128 and normalize the execution time to the case
when RF=128. We observe that RF=16, RF=32, and RF=64
have 46.8%, 26.8%, and 9.5% performance drop compared

to RF=128, respectively. The performance drop is attributed
to the decreased number of registers that results in (1) more

813

Fig. 10. Sensitivity of (a) the number of registers; (b) the scratchpad size.

Fig. 11. Instruction breakdown of iPIM programs.

registers spilling to the local DRAM bank, and (2) increased

register data dependency. Second, to study the PGSM sensitiv-

ity (Fig.10(b)), we change the PGSM from 2KB to 8KB and

normalize the execution time to the case when PGSM=8KB.
We observe that PGSM=2KB and RF=4KB have 58.9% and

39.0% performance drop compared to PGSM=8KB, respec-
tively. This is because reduced scratchpad size will increase

the number of accesses to long latency DRAM. For this paper,

we choose RF=64 and PGSM=8KB as a tradeoff between

performance and area overhead (Table.IV).

D. Instruction Breakdown

From the instruction breakdown of iPIM programs shown

in Fig.11, we can observe that each benchmark is a com-

bination of different instructions with varied ratios. From

the programmability perspective, this indicates that SIMB

ISA efficiently maps heterogeneous pipeline stages which

exhibit diverse computation, data movement, and control flow

patterns. Therefore, SIMB ISA can provide flexible support

for a wide range of image processing applications.

We also find that index calculation instructions on average

take 23.25% of total instruction count. Since the image uses

2D memory abstraction and physical memory assumes linear

address space, frequent index calculations are required to map

the 2D image reference locations to the corresponding memory

addresses. This index calculation overhead takes more than

Fig. 12. Effectiveness of different iPIM compiler optimizations.

28% of total instruction count for Blur, Shift, Histogram,

Bilateral Grid, and Stencil Chain benchmarks. This provides

a direct explanation about iPIM’s moderate speedup on these

benchmarks as shown in Fig.6 except for Histogram.

Another important observation is that the inter-vault data

movement instructions are a very small part (1.44%) of the
total instruction count. This confirms image processing kernels

have good data parallelism and can be efficiently mapped onto

near-bank architecture with little global data movement.

E. Compiler Analysis

1) Effectiveness of compiler optimizations: We add a set
of comparative evaluations to justify the performance bene-

fits provided by iPIM’s compiler optimizations (Fig.12). We

summarize these optimization choices as follows. The register

allocation policy determines whether to use the minimum

number of physical registers (min) or scatter registers to
avoid the dependency of instructions (max). The instruction
reordering option determines whether to reorder the instruction

of programs generated by the register allocation stage. The

memory order enforcement option chooses whether to add

dependency edges on adjacent memory requests or not before

sending the dependency graph to the instruction reordering

stage. The optimized design (opt) adopts the max register
allocation policy and applies both instruction reordering and

memory order enforcement. The naı̈ve baseline (baseline1)
assumes the min register allocation policy without instruction
reordering. All of baseline2, baseline3, and baseline4 have
only one different compiler optimization option compared to

opt . Specifically, baseline2 uses the min register allocation
policy, baseline3 does not apply instruction reordering, and
baseline4 does not enforce memory order. The rest of settings
for baseline2− 4 remain the same as opt.
We observe that all of iPIM compiler optimizations provide

an overall 3.19× speedup (opt v.s. baseline1). Further analy-
sis shows thatmax register allocation provides 2.59× speedup
than min register allocation (opt v.s. baseline2). This is be-
cause iPIM’s in-order core does not support expensive register

renaming mechanism in the out-of-order execution, and max
register allocation can optimally eliminate output-dependency

and anti-dependency to prevent issue stall of later instructions.

Next, instruction reordering provides 2.74× speedup (opt
v.s. baseline3), since it can expose more instruction-level-

814

Fig. 13. iPIM’s key components’ utilization and IPC.

parallelism by overlapping instructions without dependency.

In the end, enforcement of memory-order provides 1.30×
speedup (opt v.s. baseline4). The reason is that it can

maximally interleave other instructions with memory access

requests and it also improves row buffer locality.

2) IPC and Utilization analysis: As shown in Fig.13, we
provide the IPC of the control cores and the utilization of key

hardware components on the PIM dies. First, we observe that

the average IPC achieves a very high value of 0.63 after inten-
sive compiler optimizations. This implies that iPIM currently

attains near-optimal performance, and further improvement

has an upper bound of 1.59× assuming no pipeline stalls.

Second, detailed analysis shows that for each benchmark,

key hardware components reach very high utilization. For

example, benchmarks with intensive index calculations (Blur,

Shift, Histogram, Bilateral Grid, and Stencil Chain) realize

more than 40% utilization on the address register file. As

a conclusion, the high IPC and hardware utilization indicate

current compilation flow has well-optimized image processing

applications on iPIM architecture.

VIII. RELATED WORK

Image processing accelerators. Previous work has ex-
plored Field Programmable Gate Array (FPGA) [19], [41],

[59], Coarse Grain Reconfigurable Arrays (CGRA) [67],

[68], and ASIC solutions [20], [49] for image processing

acceleration. These accelerators target mobile and embedded

platforms, where power-efficiency and low latency are the

primary goals of optimization. Also, the application scenar-

ios are mostly image streaming applications with a small

working set, so spatially distributed data flow architecture is

often adopted to map the entire image processing pipeline.

To achieve the desired power-efficiency, line buffer [67] is

widely used to exploit producer-consumer data locality and

fuse pipeline stages, so the intermediate data can stay on-chip

without expensive off-chip memory access. In comparison,

iPIM focuses on data center and workstation environments,

where the complex algorithm pipelines and large working set

due to high-resolution images need both high memory capacity

and bandwidth. Thus, conventional compute-centric accelera-

tors will suffer from the memory bandwidth bottleneck, while

iPIM’s near-bank architecture provides abundant bandwidth

resources to tackle this challenge.

Process-in-memory (PIM) accelerators. We compare

iPIM with previous work using practical DRAM technol-

ogy without invasive modifications to the DRAM bank’s

circuitry [46], [47]. The first category of research [26], [38],

[57] that tries to integrate processor cores to DRAM dies

suffers from large area overhead. iPIM solves this challenge

by proposing a control-execution decoupled approach where

the control core is placed on the base logic die and shared

by execution units closely integrated with each bank. The

second category of research adopts 3D process-on-logic-die

architecture [5], [10], [29], [33], [39], [45], [54], [70], [74],

[76], which is bound by the TSV bandwidth available in

the base logic die. iPIM evaluation shows 3.61× speedup

and 56.71% energy saving compared with this approach. To

further improve memory bandwidth, a few work [3], [64],

[73] employs near-bank architecture similar to this work, but

only supports limited fixed functionalities and cannot map the

heterogeneous image processing pipelines which have diverse

computation and memory patterns. iPIM proposes SIMB ISA

and an end-to-end compilation flow to solve this programma-

bility challenge. In addition, some recent work proposes inte-

grating computation logic on the DRAM DIMM modules to

enable low overhead near-data processing [6], [7], [32], [43].

While practical, these architecture designs only have small

bandwidth improvement over CPUs compared with 3D-PIM

solutions. There are also studies exploiting PIM architectures

based on non-volatile memory (NVM) technologies [8], [17],

[27], [35], [44], [69]. Compared with these studies, DRAM

provides a better write endurance than NVM, which is critical

to image processing applications where intermediate results of

pipelines need to be written back to memory.

IX. CONCLUSION

This paper proposes iPIM, the first programmable in-

memory image processing accelerator using near-bank archi-

tecture. iPIM uses a decoupled control-execution architecture

to support lightweight programmability. It also contains a

novel SIMB (Single-Instruction-Multiple-Bank) ISA to enable

various computation and memory patterns for heterogeneous

image processing pipelines. In addition, this paper develops an

end-to-end compilation flow extended from Halide with new

schedules for iPIM. The compiler backend further contains op-

timizations for iPIM including register allocation, instruction

reordering, and memory order enforcement. Evaluations show

that iPIM supports programmability with small area overhead,

and provides significant speedup and energy saving compared

with GPU. Further analysis demonstrates the benefits of iPIM

compared with the previous process-on-base-logic architecture

design and the effectiveness of iPIM’s compiler optimizations.

REFERENCES

[1] “ARM Cortex-A5 processor,” 2009, https://https://www.arm.com/
products/silicon-ip-cpu/cortex-a/cortex-a5. [Online]. Available: https:
//https://www.arm.com

[2] “NVIDIA Tesla V100 GPU Architecture,” 2018,
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf. [Online]. Available: http://www.nvidia.com

815

[3] S. Aga, N. Jayasena, and M. Ignatowski, “Co-ml: a case for collaborative
ml acceleration using near-data processing,” in Proceedings of the
International Symposium on Memory Systems. ACM, 2019, pp. 506–
517.

[4] A. Agrawal, J. Torrellas, and S. Idgunji, “Xylem: Enhancing vertical
thermal conduction in 3d processor-memory stacks,” in 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 2017, pp. 546–559.

[5] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 3, pp. 105–117, 2016.

[6] M. Alian and N. S. Kim, “Netdimm: Low-latency near-memory network
interface architecture,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 699–711.

[7] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K.
Wang, T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J. Xiong
et al., “Application-transparent near-memory processing architecture
with memory channel network,” in 2018 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 802–814.

[8] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al.,
“Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2019, pp. 715–731.

[9] A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche, “It’s time to
think about an operating system for near data processing architectures,”
in Proceedings of the 16th Workshop on Hot Topics in Operating
Systems. ACM, 2017, pp. 56–61.

[10] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan et al.,
“Google workloads for consumer devices: Mitigating data movement
bottlenecks,” in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018,
pp. 316–331.

[11] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, R. Ausavarung-
nirun, K. Hsieh, N. Hajinazar, K. T. Malladi, H. Zheng et al., “Conda:
Efficient cache coherence support for near-data accelerators,” 2019.

[12] S. T. Bow, Pattern recognition and image preprocessing. CRC press,
2002.

[13] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[14] K.-y. Chae, “Advanced microcontroller bus architecture (amba) system
with reduced power consumption and method of driving amba system,”
Jun. 19 2007, uS Patent 7,234,011.

[15] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image process-
ing with the bilateral grid,” in ACM Transactions on Graphics (TOG),
vol. 26, no. 3. ACM, 2007, p. 103.

[16] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked dram
main memory,” in Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 2012, pp. 33–38.

[17] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[18] Y. Chi, J. Cong, P. Wei, and P. Zhou, “Soda: stencil with optimized
dataflow architecture,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[19] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A dsl compiler
for accelerating image processing pipelines on fpgas,” in 2016 Interna-
tional Conference on Parallel Architecture and Compilation Techniques
(PACT). IEEE, 2016, pp. 327–338.

[20] J. Clemons, C.-C. Cheng, I. Frosio, D. Johnson, and S. W. Keckler, “A
patch memory system for image processing and computer vision,” in The
49th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Press, 2016, p. 51.

[21] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio,
“A common backend for hardware acceleration on fpga,” in 2017 IEEE
International Conference on Computer Design (ICCD). IEEE, 2017,
pp. 427–430.

[22] T. M. Deserno, “Biomedical image processing,” 2011.
[23] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss,

J. Granacki, J. Shin, C. Chen, C. W. Kang et al., “The architecture

of the diva processing-in-memory chip,” in Proceedings of the 16th
international conference on Supercomputing, 2002, pp. 14–25.

[24] G. Dupenloup, “Automatic synthesis script generation for synopsys
design compiler,” Dec. 28 2004, uS Patent 6,836,877.

[25] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die-
stacked processing in memory,” 2014.

[26] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKen-
zie, “Computational ram: Implementing processors in memory,” IEEE
Design & Test of Computers, vol. 16, no. 1, pp. 32–41, 1999.

[27] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp. 1–14.

[28] J. Fung and S. Mann, “Using graphics devices in reverse: Gpu-based
image processing and computer vision,” in 2008 IEEE international
conference on multimedia and expo. IEEE, 2008, pp. 9–12.

[29] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in ACM SIGARCH Computer Architecture News, vol. 45, no. 1. ACM,
2017, pp. 751–764.

[30] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: compiling
high-level image processing code into hardware pipelines.” ACM Trans.
Graph., vol. 33, no. 4, pp. 144–1, 2014.

[31] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). IEEE, 2014, pp. 10–14.

[32] W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “Medal: Scalable
dimm based near data processing accelerator for dna seeding algorithm,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 587–599.

[33] J. Jang, J. Heo, Y. Lee, J. Won, S. Kim, S. J. Jung, H. Jang, T. J.
Ham, and J. W. Lee, “Charon: Specialized near-memory processing
architecture for clearing dead objects in memory,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2019, pp. 726–739.

[34] J. R. Jensen, Introductory digital image processing: a remote sensing
perspective. Prentice Hall Press, 2015.

[35] Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and
Y. Xie, “Fpsa: A full system stack solution for reconfigurable reram-
based nn accelerator architecture,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 733–747.

[36] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

[37] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2013,
pp. 86–96.

[38] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and
J. Torrellas, “Flexram: Toward an advanced intelligent memory system,”
in Proceedings 1999 IEEE International Conference on Computer
Design: VLSI in Computers and Processors (Cat. No. 99CB37040).
IEEE, 1999, pp. 192–201.

[39] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 380–
392.

[40] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer architecture letters, vol. 15, no. 1, pp.
45–49, 2015.

[41] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis et al., “Spatial: A language
and compiler for application accelerators,” in ACM Sigplan Notices,
vol. 53, no. 4. ACM, 2018, pp. 296–311.

[42] P. M. Kogge, “Execube-a new architecture for scaleable mpps,” in 1994
International Conference on Parallel Processing Vol. 1, vol. 1. IEEE,
1994, pp. 77–84.

[43] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 740–753.

816

[44] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “Rram-based
analog approximate computing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 34, no. 12, pp. 1905–
1917, 2015.

[45] J. Li, X. Wang, A. Tumeo, B. Williams, J. D. Leidel, and Y. Chen,
“Pims: a lightweight processing-in-memory accelerator for stencil com-
putations,” in Proceedings of the International Symposium on Memory
Systems. ACM, 2019, pp. 41–52.

[46] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng,
B. Brennan, and Y. Xie, “Scope: A stochastic computing engine for
dram-based in-situ accelerator.” in MICRO, 2018, pp. 696–709.

[47] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2017, pp. 288–301.

[48] X. L. Li, B. Veeravalli, and C. Ko, “Distributed image processing on
a network of workstations,” International Journal of Computers and
Applications, vol. 25, no. 2, pp. 136–145, 2003.

[49] M. Mahmoud, B. Zheng, A. D. Lascorz, F. H. Assouline, J. Assouline,
P. Boucher, E. Onzon, and A. Moshovos, “Ideal: Image denoising
accelerator,” in 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2017, pp. 82–95.

[50] C. McGinnis, “Pci-sig® fast tracks evolution to 32gt/s with pci express
5.0 architecture,” News Release, June, vol. 7, 2017.

[51] D. Milojevic, S. Idgunji, D. Jevdjic, E. Ozer, P. Lotfi-Kamran, A. Panteli,
A. Prodromou, C. Nicopoulos, D. Hardy, B. Falsari et al., “Thermal
characterization of cloud workloads on a power-efficient server-on-
chip,” in 2012 IEEE 30th International Conference on Computer Design
(ICCD). IEEE, 2012, pp. 175–182.

[52] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fa-
tahalian, “Automatically scheduling halide image processing pipelines,”
ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 83, 2016.

[53] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic
optimization for image processing pipelines,” in ACM SIGPLAN Notices,
vol. 50, no. 4. ACM, 2015, pp. 429–443.

[54] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim:
Enabling instruction-level pim offloading in graph computing frame-
works,” in 2017 IEEE International symposium on high performance
computer architecture (HPCA). IEEE, 2017, pp. 457–468.

[55] NVIDIA, “Nvidia data loading library (dali),” NVIDIA DALI documen-
tation: https://github.com/NVIDIA/DALI, 2019.

[56] S. Paris, S. W. Hasinoff, and J. Kautz, “Local laplacian filters: Edge-
aware image processing with a laplacian pyramid.” ACM Trans. Graph.,
vol. 30, no. 4, p. 68, 2011.

[57] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE micro, vol. 17, no. 2, pp. 34–44, 1997.

[58] J. T. Pawlowski, “Hybrid memory cube (hmc),” in 2011 IEEE Hot Chips
23 Symposium (HCS). IEEE, 2011, pp. 1–24.

[59] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and
M. Horowitz, “Programming heterogeneous systems from an image pro-
cessing dsl,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 14, no. 3, p. 26, 2017.

[60] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “Ndc: Analyzing the impact
of 3d-stacked memory+logic devices on mapreduce workloads,” in 2014
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2014, pp. 190–200.

[61] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” in Acm
Sigplan Notices, vol. 48, no. 6. ACM, 2013, pp. 519–530.

[62] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in ACM SIGARCH Computer Architecture
News, vol. 28, no. 2. ACM, 2000, pp. 128–138.

[63] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the bandwidth wall: challenges in and avenues for cmp scaling,”
ACM SIGARCH Computer Architecture News, vol. 37, no. 3, pp. 371–
382, 2009.

[64] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “Mcdram:
Low latency and energy-efficient matrix computations in dram,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2613–2622, 2018.

[65] M. D. M. F. J. L. Shuhang Gu, Andreas Lugmayr and R. Timofte,
“Div8k: Diverse 8k resolution image dataset,” in International Confer-
ence on Computer Vision (ICCV) Workshops, October 2019.

[66] K. Sohn, W. Yun, R. Oh, C. Oh, S. Seo, M. Park, D. Shin, W. Jung,
S. Shin, J. Ryu, H. Yu, J. Jung, K. Nam, S. Choi, J. Lee, U. Kang,
Y. Sohn, J. Choi, C. Kim, S. Jang, and G. Jin, “A 1.2 v 20 nm 307
gb/s hbm dram with at-speed wafer-level io test scheme and adaptive
refresh considering temperature distribution,” IEEE Journal of Solid-
State Circuits, vol. 52, no. 1, pp. 250–260, 2017.

[67] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz, “Evaluating programmable architectures for imaging
and vision applications,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[68] F.-J. Veredas, M. Scheppler, W. Moffat, and B. Mei, “Custom implemen-
tation of the coarse-grained reconfigurable adres architecture for multi-
media purposes,” in International Conference on Field Programmable
Logic and Applications, 2005. IEEE, 2005, pp. 106–111.

[69] K. Wu, G. Dai, X. Hu, S. Li, X. Xie, Y. Wang, and Y. Xie, “Memory-
bound proof-of-work acceleration for blockchain applications,” in Pro-
ceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1–6.

[70] C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, “Pim-vr: Erasing motion
anomalies in highly-interactive virtual reality world with customized
memory cube,” in 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 2019, pp. 609–622.

[71] Y. Xie and J. Zhao, “Die-stacking architecture,” Synthesis Lectures on
Computer Architecture, vol. 10, no. 2, pp. 1–127, 2015.

[72] Y. Yan and L. Huang, “Large-scale image processing research cloud,”
Cloud Computing, pp. 88–93, 2014.

[73] A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh,
and N. S. Kim, “In-dram near-data approximate acceleration for gpus,”
in Proceedings of the 27th International Conference on Parallel Archi-
tectures and Compilation Techniques. ACM, 2018, p. 34.

[74] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 544–557.

[75] Y. Zhu, B. Wang, D. Li, and J. Zhao, “Integrated thermal analysis
for processing in die-stacking memory,” in Proceedings of the Second
International Symposium on Memory Systems, 2016, pp. 402–414.

[76] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2019, pp. 712–725.

817

