
1556-6056 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2020.2995167, IEEE Computer
Architecture Letters

NMTSim: Transaction-Command based Simulator for New
Memory Technology Devices

Peng Gu∗, Benjamin S. Lim†, Wenqin Huangfu∗, Krishan T. Malladi†, Andrew Chang†, and Yuan Xie∗
∗University of California, Santa Barbara, USA
†Samsung Semiconductor, San Jose, USA

Abstract—To mitigate the impact of non-deterministic media access latencies in new memory technology devices, a recently proposed
NVDIMM (Non-Volatile Dual In-line Memory Module) standard, NVDIMM-P [1], uses novel out-of-order transaction commands. The
previous DRAM simulators [2], [3], [4] are unable to support this transaction protocol due to deterministic DDR timing. Also, existing
NVDIMM [5] simulators are customized for NAND flash memory, which are not generally applicable to emerging NVM (Non-Volatile
Memory). In this paper, we present NMTSim, a transaction-command based and cycle accurate simulator for new memory technology
devices. Strictly conforming to NVDIMM-P standard, NMTSim introduces a new memory controller with transaction handling and
command issuing capabilities. To enable simulation for emerging NVM using DDR4 standard, we propose some new NVM timing
parameters and incorporated them into DRAMSim2 [2]. Furthermore, DRAMSim2 is augmented with transaction handling and
command scheduling logic to be the backend for the media controller. In addition, NMTSim incorporates an optimized transaction
command issuing policy and an early notification mode to optimize access latency. We verify NMTSim using Intel Optane [6], and
characterize its performance using synthetic benchmarks with different read / write ratios.
Index Terms—Emerging technologies, Primary memory, Simulation

F
1 INTRODUCTION

NVDIMM (Non-Volatile Dual In-line Memory Module) is a
viable approach to realize persistent memory, which can bridge
the performance and capacity gap between memory and stor-
age hierarchies. Since NVDIMM supports various new mem-
ory technology devices in the same channel, it is necessary
to tolerate the non-deterministic access latency of different
media types. To enable this, a recently proposed NVDIMM-
P [1] protocol utilizes novel out-of-order transaction com-
mands. Unlike DDR timing which assumes synchronous media
responses, NVDIMM-P allows asynchronous media activities
through a transaction handshaking mechanism. For example,
after receiving an XREAD (transaction READ) command,
the media controller can respond to the host (RD RDY) af-
ter a non-deterministic time. The host can acknowledge the
RD RDY signal by issuing a SEND command also after a
non-deterministic time.

However, existing memory simulators are either unable
to support the novel transaction features in NVDIMM-P, or
confined to a limited media scope. Previous DRAM simulators,
including DRAMSim2 [2], NVMain2 [3], and Ramulator [4],
only employ deterministic DDR timing protocols. Significant
modification efforts are required to add handshaking and
transaction handling logic in the complex scheduling unit of
memory controller. Also, the passive memory module needs
to add extensive new functionalities to become a media con-
troller that can independently process host-issued commands.
Previous NVDIMM simulators (e.g., FlashDIMMSim [5]) are
customized for traditional flash media with block-granularity.
While emerging NVMs have demonstrated better performance
and byte-addressability, it is more promising to explore them
as memory media for NVDIMM.

This paper proposes NMTSim, a transaction-based
(NVDIMM-P compatible) and cycle accurate memory simulator
for new memory technology devices. To support transaction
semantics, NMTSim includes a new memory controller with
queuing structures, transaction handling logic and a command
issuing unit. For the media controller, NMTSim uses a modi-
fied DRAMSim2 [2] simulator as the DRAM/NVM back-end,
adapts DDR4 timing parameters to simulate emerging NVM
devices, and adds a command scheduling unit and corre-

sponding transaction functionalities. We validate NMTSim’s
simulation accuracy using real hardware measurements from
Intel Optane memory [6], which uses a proprietary transaction
command protocol for 3D Xpoint memory.

NMTSim also incorporates two architectural level optimiza-
tions to reduce latency overhead introduced by transaction
commands. The first optimization grants SEND command
higher priority than XREAD command, and can significantly
reduce access latency under high host request bandwidth.
The second optimization enables early host notification from
media controller, and can save tRL latency for all host request
bandwidth. After applying these optimizations, we thoroughly
compare the performance of NVDIMM-P and DDR4 using
DRAM and NVM with synthetic benchmarks under different
read/write ratios. We summarize the main contributions of
NMTSim as follows:

1) We propose NMTSim, a transaction-command based
and cycle accurate simulator for new memory technolo-
gies. We show the simulation framework of NMTSim
and verify it using Intel Optane memory [6].

2) We incorporate a command issue optimization and
an early notification functionality for transaction-
command in NMTSim, and demonstrate the latency
improvements of these two schemes.

3) We evaluate NMTSim using synthetic benchmarks.
Evaluation results on both DRAM and NVM devices
show slight latency overhead of NVDIMM-P compared
with DDR4.

Figure 1. NMTSim’s high-level overview.

2 NMTSIM DESIGN

We first introduce the high-level overview of NMTSim in
Sec. 2.1. Then, in Sec. 2.2 we explain the detailed simulator com-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 04,2020 at 18:09:35 UTC from IEEE Xplore. Restrictions apply.

1556-6056 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2020.2995167, IEEE Computer
Architecture Letters

Figure 2. NMTSim’s block diagram and data/control paths. The circled numbers represent time stamps in a XREAD command in Fig. 3

ponents, data paths, and control paths to support transaction
commands. Last, Sec. 2.3 discusses the new timing parameters
to support emerging NVM.

2.1 High-level Overview

NMTSim consists of a front-end processor interface, a mem-
ory controller, an interface bus, and a media controller with
DRAM/NVM modules as shown in Fig. 1. In trace-based sim-
ulation mode, the front-end processor interface is compatible
with DRAMSim2, and can be easily modified to support any
new processors. The memory controller supports two memory
protocols: DDR4 protocol which is implemented by a modi-
fied DRAMSim2 memory controller, and NVDIMM-P protocol
which is realized by the proposed NVDIMM-P memory con-
troller. The two protocols coexist on the same memory channel,
on which DDR4 uses normal READ/WRITE commands for
DIMM-0, and NVDIMM-P uses XREAD/XWRITE commands
for DIMM-1. For NVDIMM-P protocol, an additional media
controller is included to support transaction semantics. Other
NVDIMM-P commands such as PWRITE and FLUSH are also
supported, but are out of the scope of this paper and will
be studied in future work. In full-system simulation mode,
NMTSim can be integrated into existing architecture simulators
(e.g., GEM5) to receive and respond host memory requests.

2.2 Support Transaction Commands Simulation

To support transaction commands, a new memory controller
with NVDIMM-P queuing structures, command issuing logic,
and transaction handling logic are proposed as shown in Fig. 2.
The NVDIMM-P transaction buffer will store accepted host
memory requests, and the command buffer will store translated
NVDIMM-P commands. The NVDIMM-P command issuing
unit will decide which command can be sent to the media con-
troller according to transaction states and command priority,
and the transaction handling logic will arbitrate command and
data traffic to avoid conflicts on the bus according to NVDIMM-
P timing. An XREAD (XWRITE) command can only be issued
if there is available read (write) credit, and the corresponding
credit will decrement by one after a command is sent. The
read credit will increment by one if memory controller receives
a returned read data packet. Released write credit will be
piggybacked through returned read data packet. However, if
there is no enough write credit, memory controller can compose
a READ STATUS command and explicitly ask the media con-
troller for more write credit. After receiving a RD RDY signal
from RSP bus, a SEND command will be prepared and issued
by the command issuing logic.

From the media controller side, the received commands
will first be interpreted and added to command queues for

Table 1
Latency terminologies for an XREAD command.

Parameter Definition
T1 Memory Controller Transaction Buffer Latency
T2 Memory Controller Command Buffer Latency
T3 Media Controller Command Queue Latency
T4 DRAMSim2 Transaction Buffer Latency
T5 DRAMSim2 Command Queue Latency
T6 Media Bank Access Latency
T7 Memory Controller Response Latency
T8 Memory Controller SEND Latency
Tadd Cache Access Handling and Bus-interface Unit Latency

further scheduling. At the same time, the corresponding credit
will decrement by one. Since NVDIMM-P supports out-of-
order transactions, the NVDIMM-P command scheduling logic
will select a command without data hazard for execution.
To optimize read latency, an XREAD command has higher
scheduling priorities than an XWRITE command. The write
credit will increment after the XWRITE command is consumed
by DDRAMSim2. After an XREAD command finishes execution
by DRAMSim2, the NVDIMM-P transaction handling logic
will inform the memory controller by signaling the RSP bus.
Then, the media controller will return read data packets and
increment read credit after receiving SEND command.

By default, the NVDIMM-P protocol enables 256 maximum
read/write transaction commands. However, we find that for
memory setting with small bank number, this large command
count will cause unnecessary command queuing delay. To
reduce this delay, we add maximum read/write count to con-
strain host issued requests. The maximum read/write count is
set to match the total bank number per rank, assuming we use
a per-rank queuing structure in DRAMSim2.

2.3 Support Emerging NVM Timing Simulation

In order to support emerging NVM timing simulation using
DRAM compatible timing parameters, we propose the follow-
ing changes. First, since NVM is non-volatile in nature, for
NVM mode DRAM REFRESH command is disabled and all
corresponding timing parameters are set to zero. Second, we
change the tRCD to tRCD R for read and tRCD W for write con-
sidering the asymmetric read/write behavior for NVM. Since
NVM write does not require row activation, we set tRCD W = 0
for a full page write. Similarly, we change the tRP to tRP R for
read and tRP W for write. Since NVM read does not require
row precharge, we set tRP R = 0. Third, to account for partial
page write overhead, we add a new timing parameter tRMW

(Read-Modify-Write). If write request number to the same row
is smaller than the page size, then an additional tRMW latency
overhead is induced to read the unmodified portion of the page.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 04,2020 at 18:09:35 UTC from IEEE Xplore. Restrictions apply.

1556-6056 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2020.2995167, IEEE Computer
Architecture Letters

Figure 3. XREAD latency breakdown and illustration of early notification mode. Timing terminologies are detailed in Table. 1.

Table 2
NMTSim Architecture and Timing Configuration.

Parameter NVM DRAM Parameter NVM DRAM
Channel 1 1 tCK 0.75ns (2666MHz)
Rank 1 2 tRCD R 192ns 14.3ns
BankGroup 2 4 tRCD W 0ns 14.3ns
Bank 4 4 tRP R 0ns 13.5ns
Row 226 216 tRP W 489ns 13.5ns
Column 25 210 tRMW tRCD R+tRP W -
DeviceWidth 8 8 tREF - 7800ns
Capacity 128GB 16GB tRFC - 260.3ns
CmdQueueStruct Per Rank CmdQueueDepth 16 32
RowBufferPolicy Close-Page Scheduling Rank-Bank Round Robin

The tRCD R and tRP W parameters should be derived
based on actual NVM measurement results. First, a sequential
benchmark should be used to stress the actual NVM hardware,
and the maximum achievable read and write bandwidth can
be discovered. Then, using the same benchmark and assuming
the same configuration as the baseline NVM hardware, we
can sweep tRCD R/tRP W parameter space to acquire the
maximum achievable read/write bandwidth curve. In the end,
we can select the tRCD R/tRP W value if the corresponding
read/write bandwidth matches hardware measurements.

3 TRANSACTION COMMAND OPTIMIZATION

Before introducing the optimizations, we illustrate the latency
breakdown for an XREAD command in Fig. 3 and related
timing terminologies in Table. 1. Since the load-to-use latency
measures the request-to-service interval from a host CPU, we
also include a constant additional latency [7] to count for host
cache access handling and bus-interface unit delay, which are
extracted from the CPU baseline in Sec. 4.1. Specifically, the
Tadd represents the latency between the memory controller
and the host load-store interface. All analysis in this section
uses synthetic random benchmarks (64Byte access granularity)
based on the hardware configuration of Table. 2.

3.1 Command Issue Optimization
The memory controller command issuing logic needs to decide
the priority between SEND and XREAD for optimal perfor-
mance when the command bus is congested. The first policy
(p1) grants XREAD with higher priority to reduce memory
controller side queuing latency and delays SEND. In contrast,
the second policy (p2) gives SEND the higher priority which
shortens the latency of already-issued XREAD but blocks new
XREAD. We plot the latency-bandwidth graph of the two
policies for DRAM and NVM in Fig. 4 (a-1)/(b-1), respectively.
We can observe that for DRAM, p2 can significantly reduce
access latency compared with p1 for high memory bandwidth
cases. Further latency breakdown in Fig. 4 (a-2) finds that the
latency increase in p1 is mainly incurred by T7, which is the
memory controller response queuing latency for SEND. This
validates the benefits of p2. However, we also observe that

p2 has larger T5 than p1, which corresponds to DRAMSim2
command queuing latency. Since we add maximum read count
constraints in the simulator, earlier completion of XREAD (p2)
will encourage the memory controller to accept and send
more XREAD to media controller, which in turn increases
the queuing delay (T5). For NVM, these two policies show
little difference in terms of latency. This is because NVM has
much lower sustained bandwidth compared with DRAM, so
the command bus will not be congested to issue SEND and
XREAD commands, as shown in Fig. 4 (b-2).

Figure 4. The comparison of two command issuing policies (p1,p2).
(a) DRAM media. (b) NVM media. Left: bandwidth-latency graph.
Right: latency breakdown.

3.2 Early Notification
NVDIMM-P supports early host notification to reduce response
latency. Fig. 3 illustrates the timing differences of disabling (No
tRRSE) and enabling (tRRSE) early notification. When early
notification is not supported, media controller needs to wait
until the media returns read data to inform host (RD RDY).
When early notification is enabled, media controller can inform
the host (RD RDY) in advance, and memory controller needs
to wait for a certain time interval (tRRSE) after receiving
RD RDY to issue SEND. The choice of early notification
timing depends on implementation of memory controller and
the design of media controller. Here, for optimistic estimation,
we assume host response immediately after receiving early
notification and media controller signals RD RDY at the same
time it issues READ to the media. After including the op-
timization in Sec. 3.1, we plot the bandwidth-latency graph
of disabling and enabling early notification for DRAM and
NVM in Fig. 5 (a-1)/(b-1). We find that for low to medium
memory bandwidth, enabling early notification can greatly
reduce latency (∼ 15ns) for both NVM and DRAM. However,
for high memory bandwidth, the latency gap closes between

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 04,2020 at 18:09:35 UTC from IEEE Xplore. Restrictions apply.

1556-6056 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCA.2020.2995167, IEEE Computer
Architecture Letters

e1 and e2. We further investigate the latency breakdown in
Fig. 5 (a-2)/(b-2). First, we observe the latency reduction of
e2 is mainly contributed by reducing T6, since the media bank
access latency is overlapped by tSEND in early notification case.
Second, we observe that as request bandwidth increases, T5
increases rapidly for e2 until the latency saturates. Under the
constraints of maximum read count, e1 require less XREAD to
saturates the latency, so the extra XREAD for e2 will stack in
DRAMSim2’s command queue and add to the queuing latency.

Figure 5. The comparison between disabling(e1)/enabling(e2) early
notification. (a) DRAM media. (b) NVM media. Left: bandwidth-
latency graph. Right: latency breakdown.

4 VALIDATION AND EVALUATION

4.1 Validation
For the baseline hardware configuration [6], we use an Intel
Xeon Platinum 8280L processor with a single memory channel,
which contains a 128GB DCPMM Intel Optane memory (App
Direct mode) and a 16GB RDIMM Samsung (M393A2K43BB1)
DRAM. The baseline uses DDR-T, which is a proprietary
transaction protocol of Intel. In comparison, NMTSim assumes
NVDIMM-P transaction protocol for both DRAM and NVM
media and uses the configuration as detailed in Table. 2. The
optimizations from Sec. 3.1 and Sec. 3.2 are also incorporated
in NMTSim. We extract the additional latency (Tadd) of ∼ 35ns
for RDIMM+DRAM device and 120ns for DCPMM+Optane de-
vice. For NVM simulation, to match the maximum read band-
width (8.3GB/s) and maximum write bandwidth (2.2GB/s),
tRP W is set to 192ns and tRP W is set to 489ns. We plot the
bandwidth-latency graph and use all read and 2reads 1write
random access benchmarks (64Byte granularity) to validate the
results of NMTSim with baseline hardware measurements in
Fig. 6. The validation results show that on average NMTSim
has 2.8% and 3.4% latency error compared with the baseline.

Figure 6. Validation of NMTSim with Intel Optane.
4.2 Evaluation on Synthetic Benchmarks
After applying the optimizations from Sec. 3, we use ran-
dom access benchmarks (64Byte granularity) with various
read/write ratios (R = 0.8/0.5/0.1) to characterize the per-
formance of NMTSim using combinations of NVDIMM-P and

Figure 7. Characterize NMTSim using different Read/Write ratio (R).
(a) DRAM media. (b) NVM media.

DDR4 protocols with different media types, as shown in Fig. 7.
For both DRAM and NVM media, NVDIMM-P adds additional
transaction latency with respect to DDR4. For DRAM, the
additional latency varies little as memory bandwidth changes.
However, for NVM, the additional latency tends to increase as
read/write ratio is low. This is because NVM’s write perfor-
mance is much worse than its read performance. As read/write
ratio goes low, NVM writes will interfere read request more
significantly compared with DRAM. In addition, we observe
that NVM’s bandwidth-latency curve bends more obvious than
DRAM’s as read/write ratio becomes lower, which is also
explained by NVM’s asymmetric read/write performance.

5 CONCLUSION

In this paper, we present NMTSim, a transaction-command
based and cycle accurate simulator for new memory technol-
ogy. NMTSim introduces a new memory controller with trans-
action handling and command issuing logic. To enable simu-
lation for emerging NVM using DDR4 standard, we propose
some new NVM timing parameters and incorporated them
into DRAMSim2 [2]. Furthermore, DRAMSim2 is augmented
with transaction handling and command scheduling logic to
be the backend for the media controller. In addition, NMTSim
incorporates an optimized transaction command issuing policy
and an early notification mode to optimize access latency. We
verify NMTSim using Intel Optane memory [6], and character-
ize its performance using synthetic benchmarks with different
read/write ratio.
REFERENCES

[1] B. Gervasi, D. Designs, and J. Hinkle, “Overcoming system memory
challenges with persistent memory and nvdimm-p,” in JEDEC
Server Forum, vol. 2017, 2017.

[2] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” IEEE computer architecture
letters, vol. 10, no. 1, pp. 16–19, 2011.

[3] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems,” IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 140–143, 2015.

[4] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer architecture letters, vol. 15, no. 1,
pp. 45–49, 2015.

[5] P. Enns, FlashDIMMSim: A reasonably accu-
rate flash DIMM simulator. [Online]. Available:
https://github.com/jimstevens2001/NVDIMMSim

[6] B. Tristian, L. Travis, and C. Jamie, “Analyzing the performance of
intel optane dc persistent memory in app direct mode in lenovo
thinksystem servers,” Lenovo Press, 2019.

[7] R. S. Verdejo, K. Asifuzzaman, M. Radulovic, P. Radojković,
E. Ayguadé, and B. Jacob, “Main memory latency simulation:
the missing link,” in Proceedings of the International Symposium on
Memory Systems, 2018, pp. 107–116.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 04,2020 at 18:09:35 UTC from IEEE Xplore. Restrictions apply.

