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Abstract—The matrix-vector multiplication is the key operation for
many computationally intensive algorithms. In recent years, the emerging
metal oxide resistive switching random access memory (RRAM) device
and RRAM crossbar array have demonstrated a promising hardware
realization of the analog matrix-vector multiplication with ultra-high
energy efficiency. In this paper, we analyze the impact of nonlinear
voltage-current relationship of RRAM devices and the interconnect
resistance as well as other crossbar array parameters on the circuit
performance and present a design guide. On top of that, we propose
a technological exploration flow for device parameter configuration to
overcome the impact of nonideal factors and achieve a better trade-off
among performance, energy and reliability for each specific application.
The simulation results of a support vector machine (SVM) and MNIST
pattern recognition dataset show that the RRAM crossbar array-based
SVM is robust to the input signal fluctuation but sensitive to the tunneling
gap deviation. A further resistance resolution test presents that a 4-
bit RRAM device is able to realize a recognition accuracy of ∼ 90%,
indicating the physical feasibility of RRAM crossbar array-based SVM.
In addition, the proposed technological exploration flow is able to achieve
10.98% improvement of recognition accuracy on the MNIST dataset and
26.4% energy savings compared with previous work.

I. INTRODUCTION

The matrix-vector multiplication is of significant importance in

many applications [1], [2]. Recently, the emerging metal oxide resis-

tive switching random access memory (RRAM) device and RRAM

crossbar array have demonstrated an efficient hardware implementa-

tion of the matrix-vector multiplication [3], [4], [5]. Many studies

have explored the potential of computing with RRAM crossbar

array. For example, a low power approximate computing system,

which is based on the RRAM crossbar implementation of matrix

multiplication and neural network, has demonstrated power efficiency

of ≥ 400 GFLOPS/W [6].

Although many works have adequately demonstrated the benefits

of RRAM crossbar-based computing systems, many important non-

ideal factors are neglected. Most of the previous works are based

on a simplified circuit model [5] [7] [8] and use a linear resistor to

represent an RRAM device, which may lead to inaccurate conclusions

[9]. Moreover, some nonideal factors, such as the nonlinear voltage-

current relationship of RRAM devices, the interconnect resistance,

and the resistance state deviation, may significantly influence the

performance of RRAM crossbar array-based computing systems. For

instance, the interconnect resistance between two adjacent RRAM

devices is 2.97Ω for 22nm technology node [10]. The resistance of a

wire in a 100×100 crossbar would be as large as ∼ 300Ω. Since the

lowest resistance state of an RRAM device is only ∼ 500Ω, such a

large interconnection resistance may have a significant impact on the

voltage distribution [11]. In conclusion, a detailed and comprehensive

analysis of the impact of these nonideal factors is still lacking.
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1) We analyze the impact of various nonideal factors on the

performance of RRAM crossbar array. We demonstrate that the

RC delay of the array could be ignored (∼ 10ps for a 100×100
crossbar according to our simulation). We also propose that the

nonlinearity of RRAM devices and interconnect resistance will

have a major influence on the computation accuracy of output

voltage. Moreover, we present that the minimum resistance

state of RRAM devices has little impact on computation

accuracy while increasing load resistance will significantly

improve computation accuracy.

2) We propose a technological exploration flow of RRAM cross-

bar array to mitigate the impact of nonideal factors and realize

a better trade-off among performance, energy, and reliability

for each specific application. The proposed flow includes the

technology node and load resistance configuration, the algorith-

m of mapping matrix parameters to RRAM resistance states,

and an iterative solution to achieve a better trade-off between

power and performance.

3) Finally, we use the MNIST dataset and a linear SVM classifier

as a case study to test the performance of the proposed technol-

ogy exploration flow. The simulation results demonstrate that

the exploration flow significantly contributes to configuring the

RRAM and crossbar array parameters and achieving 10.98%

improvement of recognition accuracy and 26.4% power reduc-

tion compared with previous work [7].

II. PRELIMINARIES

A. RRAM Characteristics and Device Model

The RRAM device is a passive two-port element based on metal

oxide materials like TiOx [12], WOx [13], and HfOx [14] with

variable resistance. In this paper, we use the HfOx based RRAM

for study because it is one of the most mature RRAM materials

explored [15].

Fig. 1(a) demonstrates a 2D filament model of the HfOx based

RRAM [11]. Its conductance is exponentially dependent on the

tunneling gap distance (d). When a large voltage is applied on the

electrodes, the tunneling gap distance d will change due to the

electric filed and temperature-enhanced oxygen ion migration, and the

resistivity of RRAM device will switch between the highest resistance

state ROFF and the lowest resistance state RON . Theoretically, an
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Fig. 1. (a). Physical model of the HfOx based RRAM. (b). Structure of the
RRAM Crossbar Array.

978-1-4799-7792-5/15/$31.00 ©2015 IEEE

1C-2

106
Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 04,2020 at 18:07:34 UTC from IEEE Xplore.  Restrictions apply. 



RRAM device can achieve any resistance in the range between RON

and ROFF . This work focuses on the choice of the resistivity of

RRAM devices and other device parameters. How to tune the RRAM

device to the specific resistance state will not be discussed in the

paper.

For the HfOx based RRAM device, the nonlinear I-V relationship

can be empirically expressed as follows [11]:

I = I0 · exp(− d

d0
) · sinh( V

V0
) (1)

where d is the average tunneling gap distance. I0 (∼ 1mA), d0
(∼ 0.25nm) and V0 (∼ 0.25V ) are fitting parameters through

experiments.

In order to analyze the device and circuit interaction issues for

the RRAM crossbar array based computation, we use HSPICE to

simulate the circuit performance based on a recent Verilog-A model

described in [11].

B. RRAM Crossbar Array

The RRAM crossbar array is able to perform the analog matrix-

vector multiplication efficiently. Fig. 1(b) illustrates the structure of

the RRAM crossbar array. The relationship between the input voltage

vector (�Vi) and output voltage vector ( �Vo) can be expressed as follows

[5]: ⎡
⎢⎣

Vo,1

...

Vo,M

⎤
⎥⎦ =

⎡
⎢⎣

c1,1 · · · c1,N
...

. . .
...

cM,1 · · · cM,N

⎤
⎥⎦
⎡
⎢⎣

Vi,1

...

Vi,N

⎤
⎥⎦ (2)

Supposing that k (k = 1,2,..,N ) and j (j = 1,2,..,M ) are the index

numbers of input and output voltages, the matrix parameter ck,j can

be represented by the conductivity of the RRAM device (gk,j) and

the load resistor (gs) as:

ck,j =
gk,j

gs +
N∑
l=1

gk,l

(3)

Since both gs and gk,j can only be positive, two RRAM crossbar

arrays are required to represent a matrix with both positive and

negative parameters. The input voltage vectors of the positive RRAM

crossbar array and the negative RRAM crossbar array should be �Vi

and −�Vi, respectively. The relationship between the input and output

voltage vectors can be expressed as:

�Vo = C+ · �Vi + C− · −�Vi

= (C+ − C−) · �Vi

= C · �Vi (4)

where C+ and C− are the matrices represented by the positive and

negative RRAM crossbar arrays as described in Eq. (2) & (3).

III. DESIGN CHALLENGE DISCUSSION

In this section, the nonlinear I-V relationship of RRAM devices

and the interconnect resistance are studied. Especially, the sneak

path problem [16] when RRAM crossbar array is used as a memory

bank will not be a major problem when it is used for computation.

To further explain, the sneak path problem occurs only in memory

applications when one word line and one bit line are selected for

each write or read operation and the unselected lines will have

negative impact on the accuracy of output signals. In matrix-vector

multiplication applications, all the lines will be selected and the sneak

path problem will be eliminated.

As the goal of this paper is to explore design methodologies for

efficient computing systems based on RRAM crossbar array, the

computation error rate in different cases should be one of the major
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Fig. 2. The RRAM resistance states under different tunneling gap distance
(d) and different applied voltage (V ). The two vertical lines intersect the
tilted dotted line with 2 points, representing the same voltage deviation (5%)
from approximate linear resistance state at different (d) with distinct applied
voltage. Both the tunneling gap distance d and the applied voltage (V ) should
be limited to realize an approximate linear resistance state at V ≈ 0 for a
better computation result.

considerations. The computation error rate of output voltage can be

defined as:

ε = max |Vactual − Vtheoretical

Vtheoretical
| × 100% (5)

where Vtheoretical is calculated by Eq. (2). Other performance, such

as the operating speed of the crossbar array, is also analyzed in this

section.

A. Impact of Nonlinear Characteristics of RRAM Devices

As shown in Eq. (1), the I-V relationship of RRAM devices is

nonlinear. However, the resistance states of RRAM devices should be

constant to represent a specific matrix stably when the RRAM devices

are used to realize the matrix-vector multiplication. Therefore, to

confine the resistance deviations of RRAM devices, the range of the

voltage applied on the RRAM devices should be limited. According

to Eq. (1), the linearity of RRAM devices is mainly determined by the

term sinh( V
V0

). The RRAM device comes to an ideal linear resistance

state when V ≈ 0:

sinh(
V

V0
) ∼ V

V0
(6)

Fig. 2 illustrates the resistance states of an RRAM device under

different tunneling gap distance (d) and different applied voltages

(V ). The tilted dotted line tracks the maximum voltage that could

be applied on an RRAM device under a specific maximum deviation

from the approximate linear resistance state at V ≈ 0. For example,

a voltage of 0.5V will cause a 5% resistance deviation for d =
0.2nm. Considering the same (5%) resistance deviation, the voltage

is limited to the range of ∼ 0.15V for d = 1.9nm. These results

demonstrate that the RRAM resistance states vary with the applied

voltage and both d and V have influence on the stability of the RRAM

resistance states. Since Ohmic current dominates in the low resistance

state while tunneling current dominates in the high resistance state, a

smaller RRAM resistance state with a smaller tunneling gap distance

d will result in a more linear I-V relationship under different voltages.

Therefore, in order to realize a more linear I-V relationship of
RRAM devices, both the RRAM resistance state (the tunneling
gap distance d) and the applied voltage (V ) should be confined.

B. Impact of Interconnections

As the technology node continues to scale down, the parasitic

parameters induced by interconnects in crossbar structure can exert

negative influence on the performance of the circuit. In this paper,

two major impacts are studied: the RC delay and the interconnect

resistance.

RC delay may have a negative impact on the operating speed

of RRAM crossbar array-based computation [17]. However, the RC
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Fig. 3. Worst case computation error rates (ε) of RRAM crossbar arrays with
different crossbar array sizes (N × N ) and different technology node. The
RRAM resistance states are calculated at V ≈ 0.

delay for RRAM crossbar array is trivial (∼ 10ps according to our

simulation results) when the wire length between two adjacent junc-

tions is around tens of nanometers for a 100× 100 RRAM crossbar

array. Therefore, the RC delay is not a major consideration of
the RRAM crossbar array-based computing system design. The
design should focus on the performance of peripheral circuits
which may significantly impact the operating speed.

In order to analyze the impact of interconnect resistance on output

voltage computation accuracy, a SPICE simulation in the worst case

scenario is conducted as a corner case to guarantee the computation

accuracy in normal cases. A worst case scenario is defined that all the

input voltages of the RRAM crossbar array are of the same amplitude

and the worst result can be reflected by the output port which is

farthest away from the input ports, while all the RRAM devices are

in the lowest resistance states RON . The load resistance (RS) is set to

5kΩ and the lowest resistance states of RRAM devices (RON ) is set

to 1kΩ. The amplitude of input voltages is set to 0.9V . The crossbar

size is varied from 5 × 5 to 100 × 100 and the computation error

rate is tested as defined in Eq. (2) under different technology nodes.

The interconnect resistance between two adjacent junctions is 4.53Ω,

2.97Ω, and 1.55Ω, respectively, for a 4F 2 RRAM crossbar structure

under 16nm, 22nm, and 32nm technology node according to the

International Technology Roadmap for Semiconductors 2013 [10].

An ideal case without any interconnect resistance is also simulated

as a comparison.

The results are demonstrated in Fig. 3. When the interconnect

resistance is neglected, the computation error rate decreases with

the rise of crossbar size N × N . To be specific, the equivalent

resistance of the N shunt RRAM devices in a column will drop while

the load resistance in that column remains the same. The decreased

voltage applied on the RRAM devices will result in better linearity,

making the crossbar array represent the matrix more accurately as

described in Eq. (3). Therefore, the computation accuracy increases

with the crossbar size. However, when the interconnect resistance is

taken into consideration, the computation error rate will decrease

at the beginning and finally increase due to the voltage drop on

the interconnect resistance. Therefore, under the interaction of the

nonlinearity of RRAM devices and interconnect resistance, there will

be an optimal crossbar size N ×N for each technology node in the

worst case scenario, and the optimal crossbar size will shift slightly

as the technology node scales down. This result implies that the

nonlinearity of RRAM devices and interconnect resistance should be

considered together to realize a better implementation of the matrix-

vector multiplication operations.

IV. TECHNOLOGICAL EXPLORATION FLOW OF RRAM

CROSSBAR ARRAY

In order to overcome the impact of nonideal factors, we describe

the proposed technological exploration flow of RRAM crossbar

array and achieve better trade-off among performance, energy and

reliability. Fig. 4 demonstrates the overview of the proposed flow.
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T
echnological D

esign Space

Application MatrixRRAM Model Circuit Description File

Mapping Application Matrix to 
Crossbar Conductance

Determine Input Voltage Amplitude

Power and Accuracy Calculation

Accuracy Keeps Dropping 
for Q Times?

YES

Increase RS

Output the Optimal Solution
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Fig. 4. Proposed Technological Exploration Flow of RRAM Crossbar Array.
The flow includes the technology node and load resistance configuration, the
algorithm of matrix mapping to crossbar array and a consideration on the
trade-off between power and performance.

The flow consists of four stages: (1). Determine the crossbar size

and technology node according to characteristics of the application;

(2). Choose a proper initial RS to reduce the impact of interconnect

resistance; (3). Map the application matrix C to the RRAM conduc-

tance matrix G robustly; and (4). Iteratively explore the technological

design space and optimize the performance, energy and reliability of

the system.

A. The First Stage: Determine the Technology Node

Given an application, the crossbar array size is constrained by

the characteristics of the application. As the interconnect resistance

has negative impact on the computation accuracy of RRAM crossbar

array, the technology node should be scaled up to support applications

that require a large crossbar array or a high computation accuracy.

The scaling down of technology node will shrink the area of RRAM

crossbar array. There may exist a trade-off between the area and

computation accuracy. After the setup of crossbar size and technology

node, device level parameters can be further configured as discussed

in the next stage.

B. The Second Stage: Choice of Rs

The value of RS needs to be determined along with RON

since they influence the voltage applied on RRAM devices together.

Theoretically, when RS increases or RON decreases, the voltage

applied on the RRAM devices will decline. As discussed in Section

III-A, a smaller applied voltage will result in better linearity of

RRAM devices and better computation accuracy. In order to study

the impact of RS and RON on output voltage computation accuracy,

a simulation is conducted in the worst case scenario as defined in

III-B. In the experiment setup, we vary RON from 500Ω to 5kΩ
and RS from 1kΩ to 11kΩ with a 50× 50 crossbar size and under

22nm technology node.

The value of RS needs to be determined considering RON since

they influence the linearity of RRAM devices together. Theoretically,

when RS increases or RON decreases, the voltage applied on the

RRAM devices will decline. As discussed in Section III-A, a smaller

applied voltage will result in a better linearity of RRAM devices and

better computation accuracy. However, a smaller RON can also lead

to a more serious impact of the interconnect resistance. The impact

of RON on the computation accuracy is hard to predict. In order to

better study the impact of RS and RON in the worst case scenario

as defined in III-B, where all the RRAM devices are set to RON ,

a simulation is conducted. The crossbar size is set to 50 × 50 and

the amplitude of input voltages (which are the same) are set to 0.9V
(∼ 0.1V will be applied on the RRAM devices). The technology

node is set to 22nm. We vary RON from 500Ω to 5kΩ and vary

RS from 1kΩ to 11kΩ.
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Fig. 5. Computation Error Rates of RRAM crossbar array with different
RS and RON . The simulation results demonstrate that the computation error
rate decreases exponentially with RS , while RON has little impact on the
computation accuracy. Therefore, the technological exploration flow of RRAM
crossbar array for matrix-vector multiplication should focus on the choice of
RS .

The simulation results are illustrated in Fig. 5. It demonstrates that

the computation error rate decreases exponentially with the rise of

RS . Compared with RS , the computation accuracy improves < 1%
when RON is varied from 500Ω to 5kΩ under the same RS . This re-

sult indicates that RON has little impact on the computation accuracy.

Therefore, the choice of RON can be neglected for convenience, and

the technological exploration flow should focus on the choice of RS .

To be specific, the simulation results illustrated in Fig. 5 can serve

as a look-up table and the technological exploration flow will first

choose a proper initial RS to satisfy the worst case and reduce the

impact of interconnect resistance. In addition, since the application

performance is also influenced by the practical resistance distribution

of RRAM devices, a larger RS cannot guarantee a better computation

accuracy. A smaller initial RS can be used and the optimal choice of

RS can be achieved by iteratively exploring the technological design

space in the next stages of the technological exploration flow.

C. The Third Stage: Map Matrix Parameters to RRAM Device
Conductivities Robustly

The conductance states of RRAM devices in the crossbar array

must be configured properly to realize the multiplied matrix C.

However, as shown in Eq. (3), ck,j not only relies on the conductivity

of the corresponding RRAM device gk,j , but also depends on all the

RRAM device conductance states in the same jth column in the

crossbar array. In order to realize a one-to-one mapping between

matrix C and the conductance matrix of the RRAM crossbar array,

some previous work proposed a few simple and fast approximations

to the mapping problem like [7]:

gk,j = c′k,j · (gON − gOFF ) + gOFF (7)

When:

gs � (gON − gOFF ) ·
N∑
l=1

c′k,l (8)

Eq. (3) can be approximated to:

ck,j ≈ c′k,j · gON

gs
= c′k,j · gON ·Rs (9)

where ck,j is the matrix parameter of a specific application. gON

and gOFF are the maximum and minimum conductance states of the

RRAM devices in the crossbar array.

The above equation demonstrates a linear one-to-one mapping

between matrix C and the RRAM conductance matrix G when gs
is determined. However, the precondition of the approximation may

be difficult to be satisfied and may decrease computation accuracy.

For example, RON ≈ 1kΩ for a physical RRAM device [11], [18]

and
N∑
l=1

c′k,l ≈ 5 for a 256 × 256 RRAM crossbar array [7]. And

according to Eq. (8), Rs should be ∼ 100Ω. However, as described

in Section IV-B, such a small Rs will lead to a large computation

error because of the interconnect resistance and the nonlinearity of

RRAM devices.

In this work, we propose a numerical iteration algorithm to
map the matrix C to the conductance matrix G without any
approximation, which improves the computation accuracy of
RRAM crossbar array.

Eq. (3) can be expressed as:

gk,j − ck,j ·
N∑
l=1

gk,l = gs · ck,j (10)

All of the RRAM devices in the kth column in the crossbar array

can form a system of linear equations of N variables as together:
⎡
⎢⎢⎢⎣

1 − ck,1 −ck,1 · · · −ck,1

−ck,2 1 − ck,2 · · · −ck,2

.

.

.
.
.
.

. . .
.
.
.

−ck,N −ck,N · · · 1 − ck,N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

gk,1

gk,2

.

.

.
gk,N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

gs · ck,1

gs · ck,2

.

.

.
gs · ck,N

⎤
⎥⎥⎥⎦

(11)

The accurate conductance states of RRAM devices (gk,j) can be

achieved by solving the above equations when the matrix parameters

ck,j are provided. However, several constraints must be considered

to guarantee the solved conductance states can be realized by

physical RRAM devices. The first constraint results from the range of

conductance states that can be realized by physical RRAM devices.

Supposing the minimum and maximum conductance states of RRAM

devices in a crossbar array are gOFF and gON , respectively. The

parameters ck,j must be of the following range to enable all the

solved gk,j are within the range between gOFF and gON .

χmin ≤ ck,j ≤ χmax (12)

χmin =
gOFF

gs + gOFF + (N − 1)gON
(13)

χmax =
gON

gs + gON + (N − 1)gOFF
(14)

where χmax and χmin are the maximum and minimum matrix

parameters that can be represented by a physical RRAM crossbar

array.

Moreover, as described in Eq. (4), two crossbar are required to

represent a matrix with both positive and negative parameters. In

order to satisfy the condition described in Eq. (12), Eq. (4) should

be revised to:

Ĉ = Ĉ+ − Ĉ− = α[(C+ +Δ)− (C− +Δ)] (15)

where:

c+k,j =

{
ck,j ck,j > 0
0 ck,j ≤ 0

(16)

c−k,j =

{ −ck,j ck,j < 0
0 ck,j ≥ 0

(17)

α and Δ are parameters to map Ĉ+ and Ĉ− to the range described

in Eq. (12). The choice of α and Δ can be achieved by exhausted

search. In order to reduce the search space, a restriction of α and Δ
is required. We set cmax = max(|ck,j |). According to Eq. (12)-(15),

the constraints of α and Δ can be expressed as:

χmin

α
≤ Δ ≤ χmax

α
− cmax (18)

α ≤ χmax − χmin

cmax
(19)

Finally, Algorithm 1 demonstrates the steps of mapping the matrix C
to the conductance matrix G+ and G−. Line 1 ∼ 4 in the algorithm

are used to set up parameter constraints. Line 7 ∼ 8 & 10 ∼ 11
calculate candidate G+ and G−. Line 9 & 12 check the feasibility

of candidate solutions.
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Algorithm 1: Robust Parameter Mapping Algorithm

Input: C, gON , gOFF , gs, SearchStep
Output: G+, G−

1 Calculate C+ and C− according to Eq. (16);
2 Calculate χmin and χmax according to Eq. (13)-(14);
3 Calculate αmax according to Eq. (19);
4 Calculate Δmax and Δmin according to Eq. (18);
5 for α = αmax : −SearchStep : 0 do
6 for Δ = Δmin : SearchStep : Δmax do
7 Ĉ+ ← α(C+ +Δ);
8 Calculate G+ by solving the equation set in Eq. (11)
9 if gOFF ≤ G+ ≤ gON then

10 Ĉ− ← α(C− +Δ);
11 Calculate G− by solving the equation set in Eq. (11)
12 if gOFF ≤ G− ≤ gON then
13 return G+ and G−
14 end
15 end
16 end
17 end
18 return ‘Bad Parameters’

D. The Forth Stage: Trade-off among Performance, Energy and
Reliability

The proposed technological exploration flow iteratively tests the

performance of different parameters and tracks the optimal point.

To be specific, the technological exploration flow will first choose

a proper initial RS as discussed in Section IV-B. The selected

RS should be a small one to guarantee the amplitude of output

current. Afterwards, the technological exploration flow will calculate

the corresponding G+ and G− according to the selected RS and

the proposed robust mapping algorithm. The calculated parameters

will be used for simulating the detailed performance of the RRAM

crossbar array-based computing systems. As a larger RS may lead to

a better computation accuracy, less energy consumption but smaller

amplitude of output current, the technological exploration flow will

keep increasing RS gradually to track the change of the system per-

formance, energy and reliability. The exploration of the design space

will stop once the output current becomes too small. In addition,

the rise of RS can only guarantee that the computation accuracy

increases in the worst case. The input pattern and RRAM resistance

state distribution may lead to a worse computation accuracy for a

larger RS . Therefore, the exploration of the design space will also

stop when the computation accuracy begins to decrease continuously

for a period of time. Finally, by comparing all the tracked solutions,

the technological exploration flow is able to provide a solution with

better trade-off among performance, energy, and reliability.

V. EXPERIMENTAL RESULTS

In this section, we use the support vector machine (SVM) as a case

study to demonstrate the performance of the proposed technological

exploration flow.

Support Vector Machine (SVM) is one of the most crucial machine

learning algorithms [19] with considerable matrix-vector multiplica-

tion workload. Supposing the data can be represented as x, SVM

focuses on learning the hyperplane �w with max-margin to distinguish

x and other data. The decision of the class of x is determined

by the sign of calculating �wTx + b = �w′T x̂, where x̂ = [1;x]
and �w′ = [b;w]. Since many hyperplanes �w can form a matrix

W together, the major operation of a SVM is the matrix-vector

multiplication. Therefore, we use the RRAM crossbar array and the

proposed technology exploration technological exploration flow to

implement a SVM and test its performance.

A. Experiment Setup

In our experiment, the MNIST dataset is used to test the perfor-

mance of RRAM-based SVM. MNIST is a widely used dataset with

more than 60,000 handwritten digits for optical character recognition.

In our experiment, we choose 20,000 examples of handwritten digits

of ‘0’ ∼ ‘9’ to train the SVM. We extract a 49-dimension feature

through principal component analysis [20] from the original 28× 28
images. In other words, the dimension of input data x̂ is 50 when one

dimension for the offset b is considered. As there are ten classes of

handwritten digits in the MNIST dataset, we train 10 different SVMs

to distinguish only one digit from others. The recognition accuracy of

SVM trained on CPU is 94%. And the size of the combined matrix

W of 10 SVMs is 50 × 10. We realize this matrix with a 50 × 50
RRAM crossbar array. All the other 40 output ports are regraded as

virtual nodes whose states will not be considered. The unused RRAM

devices in the crossbar array are set to the highest resistance states

to reduce the extra energy consumption and negative impact. 5,000

other examples in the MNIST dataset are used to test the performance

of RRAM-based SVM. The maximum amplitude of input voltage is

set to 1V to achieve better linearity of RRAM devices. Most of

the input voltages applied on the RRAM devices are around tens to

hundreds of millivolt. A current comparator is used to select the port

with the highest output current and provide the recognition results.

The simulation results are provided in Table I. Some comparisons

are made between the proposed technological exploration flow and

the method based on [7] under different technology nodes.

B. Performance of Matrix Mapping Algorithm

We first compare the proposed matrix mapping algorithm with the

one proposed in [7] under the same technology node. The experiment

results demonstrate that both algorithms work well when RS is

very small (RS = 100Ω). However, as discussed in Section IV-B,

such a small RS will lead to bad computation accuracy because

of the interconnect resistance. Only ∼ 80% recognition accuracy is

achieved in this situation. As for the cases with a larger RS of 3kΩ,

the recognition accuracy of the proposed technological exploration

flow significantly increases to > 90%, while a dramatic decrease

from 90% to 9% is observed for the previous method. These results

demonstrate the approximation used in the previous work doesn’t

work well for a larger RS . And the proposed method is robust since

there’s no approximation used in the mapping algorithm.

C. Impact of RS and Interconnects

We also increase RS to 10kΩ to test the impact of RS on the

RRAM-based SVM performance. We first fix the technology node to

test the impact of RS . Compared with the cases when RS = 3kΩ, the

recognition accuracy doesn’t increase but drops from 93% to 86%.

The reason lies in that a different RS will lead to different RRAM

conductance matrix. The RRAM conductance matrix at RS may be

affected more seriously by the variation of RRAM resistance states

and the interconnect resistance. Such results verify the discussion in

Section IV-D that a larger RS is not necessary to lead to a better

computation accuracy in practical machine learning tasks instead of

the worst case. Then, we vary the technology node of interconnection

from 16nm to 32nm fixing RS . The results demonstrate that a lower

interconnect resistance is beneficial to the recognition accuracy for

RRAM-based SVM.

D. Robustness of RRAM Crossbar Array

The above results demonstrate that the RRAM-based SVM works

well under ideal conditions. However, several nonideal factors may

influence the RRAM-based SVM performance. In this section, we

discuss the impact of device variation, signal fluctuation and resis-

tance resolution to test the robustness of the RRAM-based SVM.
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TABLE I
EXPERIMENT RESULTS OF RRAM-BASED SVM WITH DIFFERNET PARAMETERS

Map Algm Tech Node RS(Ω) Signal Fluctuation (%) Device Variation (%) Accuracy (%) Improve (%) Power (mW ) Savings (%)

[7]
22nm 100

0 0
82 - 1.96 -

22nm 3k 9 -89.02 1.93 2.02
Ideal 1 90 9.76 3.00 -52.73

Proposed

22nm 100

0 0

83 1.22 4.07 -106.94
22nm 3k 93 13.41 2.02 -3.04
16nm 3k 90 9.76 1.97 -0.40
16nm 10k 83 1.22 1.40 28.99
22nm 10k 86 4.88 1.42 27.64
32nm 10k 91 10.98 1.45 26.40
22nm 3k 0 5 90 9.76 2.11 -7.26
22nm 3k 0 10 74 -9.76 2.13 -8.36
22nm 3k 0 20 53 -35.37 2.62 -33.26
22nm 3k 5 0 92 12.20 2.03 -3.33
22nm 3k 10 0 90 9.76 2.11 -7.59
22nm 3k 20 0 87 6.10 2.07 -5.51

1) Impact of Device Variation: The device variation represents the

deviation of resistance or conductance state caused by the fluctuation

of tunneling gap distance (d). Just as mentioned in Eq. (1), the tunnel-

ing gap distance (d) has an exponential relationship with the RRAM

resistance state. Therefore, the device variation may have drastically

impact on the RRAM-based computing system performance. We

test the performance of RRAM-based SVM with different maximum

deviation of 5%, 10%, and 20%, respectively. The simulation results

verify the above hypothesis and the recognition accuracy significantly

drops from 90% to only 53%. The RRAM-based SVM is very

sensitive to the variation of tunneling gap distance.

2) Impact of Signal Fluctuations: The electrical noise from the

input ports will lead to input signal fluctuation. Here we simulate the

performance of RRAM-based SVM under different fluctuations of

input signals. The results show that the proposed RRAM-based SVM

is robust to the signal fluctuations. For example, a 10% variation of

the input signal only reduces the recognition accuracy from 92% to

90%. These results demonstrate that the RRAM-based SVM is able

to work in the environments with larger signal fluctuations

3) Impact of Resistance Resolution: Bit-level represents the num-

ber of bits that can be represented by an RRAM device when building

memory architecture. For example, a 3-bit RRAM device will have

23 = 8 levels of resistance states to represent different binary values.

We test the performance of SVM based on different bit-levels. The

simulation results are illustrated in Fig. 6. The simulation results show

that the bit-level requirement for SVM on MNIST pattern recognition

task is not strict. A 4-bit RRAM device is able to realize a recognition

accuracy of more than 90%. Such results demonstrate that the RRAM

Crossbar based SVM will be quite easy to be physically realized.

VI. CONCLUSIONS

In this paper, we study the impact of a wide range of parame-

ters and propose a technology exploration flow to configure these

parameters to achieve a better trade-off among performance, energy

and reliability for RRAM crossbar array-based computing system

design. We first analyze the impact of the nonlinear I-V relationship

of RRAM devices, the interconnects, and other device parameters on
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Fig. 6. Recognition Accuracy under Different RRAM Bit Levels.

the performance of RRAM crossbar array. In order to overcome the

impact of these nonideal factors, we propose a technological explo-

ration flow of RRAM crossbar array-based computation, including

the technology node and load resistance configuration, the algorithm

of matrix mapping to crossbar array with considerations on the trade-

off between power and performance. We use the MNIST dataset

and a linear SVM classifier as a case study to test the performance

of the proposed framework. The simulation results show 10.98%

improvement of recognition accuracy and 26.4% power reduction

compared with previous work [7].
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